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SUMMARY 
 
Our project has six major mile-stones for the first two years: 
i. Mile-stone #1 [Year 1]: Data collection for MI-OH road network structure and historical 

incident data form MDOT, ODOT, and other agencies.  
ii. Mile-stone #2 [Year 1]: Developing road network models representative of major freight 

transportation routes. 
iii. Mile-stone #3 [Year 1]: Developing static re-routing optimization model and implementation 

for a limited set of scenarios. 
iv. Mile-stone #4 [Year 2]: Develop dynamic re-routing optimization models and efficient 

heuristic solution methods. 
v. Mile-stone #5 [Year 2]: Develop computationally efficient and effective parametric incident 

delay models. 
vi. Mile-stone #6 [Year 2]: Develop extensive scenarios based on vehicle, incident, distribution 

strategy, and road network characteristics, etc. 
 

The Research Team has made outstanding progress with respect to all these milestones during the 
last two years of funding. 

Mile-stone #1: We have approached the data collection goal from multiple directions. On the 
network structure (network topology, design parameters, link characteristics) side, we have 
developed collaborative relationships with managers of two MDOT projects.3 Currently, we are in 
the process of acquiring these models and a license for Paramics software. Through these 
calibrated micro-simulation models of the SouthEast-Michigan corridor, we will be able to test our 
dynamic routing decisions as well as incident (i.e. accidents, breakdowns) delay models in the 
next two years.  
 For Southeast-Michigan corridor link velocity data, we have collaborated with the MITS 
Center and signed a data-sharing agreement with Traffic.com. To date we have had multiple 
meetings with MITS Center to develop a better understanding for their traffic monitoring system 
(for Southeast-Michigan highways) and have also received data representing several months of 
traffic flow (such as velocity, occupancy) for the southeast Michigan highways. We have analyzed 
this data to improve the quality of the models being developed for dynamic vehicle routing 
decision support when operating with access to Advanced Traveler Information Systems (ATIS) 
information. For instance, through our analyses, we identified the need for representing each link’s 
congestion with a different number of states (and not force all links to be modeled with two states 
– i.e., congested and uncongested). Accordingly, we have refined the recurrent congestion state 
modeling by employing the Gaussian Mixture Model clustering method for automated detection of 
number of states and state velocity thresholds. In addition to MITS Center data, we now have 
access to Traffic.com’s sensor database covering majority of high-ways in the Southeast-Michigan 
corridor. These datasets (and the networks resulting from them) are playing a critical role for 
evaluating and refining our dynamic routing algorithms. For incident data collection, we are 
collaborating with the MITS Center. We received several months of incident data from Monroe 
Pendelton and Mark Burrows of MITS Center. This dataset allowed us to initiate modeling of non-
recurring congestion (incidents and special events) in routing applications. In addition to MITS 

                                                           

3
 METSIM and Gateway projects aim to develop tools for strategic and operational planning of highway projects through micro-simulation 

models. Both projects are utilizing the Paramics Suite software package for traffic simulation. 
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Center data, Traffic.com also has an extensive archive of incident data which we are currently 
using to develop parametric incident delay models, models of particular interest to SEMCOG. 

Mile-stone #2: We have initially constructed a simple hypothetical road network simulator to 
build, test, and validate our algorithms in Matlab. This simulator allowed us to experiment with 
various network, velocity and incident scenarios. In the second year, we have developed a 
Southeast-Michigan road network model that covers the sensors from both MITS Center and 
Traffic.com. We constructed these networks using archived historical traffic ITS data provided by 
our research partners, MITS-Center and Traffic.com. One instance from this network encompasses 
main freeways and arterials extending from the intersection of I-94 and I-275 to the intersection of 
I-696 and I-75. In addition to network construction, we developed a data extraction and network 
configuration tool that allowed us to automate the loop sensor velocity and incident data extraction 
from the ITS databases. This tool takes in the origin-destination coordinates as inputs to identify 
and locate loop sensors. Subsequently, this tool first extracts sensor velocity data and incident data 
and then configures our routing models by determining such model inputs as link travel time 
distributions by departure time of day. This tool encompasses data extraction, filtering, and 
cleaning procedures and is based on MS Access database with Matlab interface for efficient 
network configuration and algorithmic implementation.  

Mile-stones #3 and #4: The vast majority of our efforts in the first year went toward developing 
static and dynamic routing algorithms that enable congestion avoidance and travel time reduction 
in commercial cargo transportation networks. We have gone beyond Mile-stone #3 in that our 
emphasis was not just static but both static and dynamic algorithms. In the second year (Mile-
stone #4), we have concentrated our efforts on improving the efficiency of the exact dynamic 
routing algorithm and developing heuristic algorithms. 
 We have followed a two-phase approach in developing routing algorithms for the base case 
(routing for one-to-one shipment). In the first phase we focused on developing Stochastic 

Dynamic Programming (SDP) based algorithms for optimal routing under ATIS. While SDP 
algorithms yield optimal routing policies, they are not computationally efficient. However, we 
need these solutions for testing and benchmarking the effectiveness of fast heuristic algorithms to 
be developed over the course of this multi-year project. In the second phase, we have adapted the 
more computationally efficient AO* algorithms for developing optimal policies. Previously, AO* 
algorithms have been applied to stochastic routing problems with single congestion states. In our 
implementation, we have extended this heuristic algorithm to include congestion states as in SDP. 
The efficiency of the AO* algorithm significantly depends on the heuristic estimate of a lower 
bound representing travel cost to the destination node. In the absence of a quality lower bound, the 
SDP’s performance is comparable with the AO*. Hence, our algorithmic framework currently uses 
both of these methodologies. To improve the efficiency of the Stochastic Dynamic Programming 
algorithm we developed a variety of smart routines for different tasks.4  

Mile-stone #5:  Towards the end of the first year, we developed preliminary incident delay 
models. In the second year, we have extended and refined these models by calibrating according to 
the incident data obtained from MITS Center and Traffic.com.  
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 For instance, we developed an efficient pre-processing model (based on Dijkstra’s algortihm) for extracting a sub-network from the full network 

given an O-D pair. We have further transformed the state space representation for more efficient data access. In terms of presentation and ease 

of use, we are planning to implement our algorithms using Google Maps API interface beginning with the third year. 
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 Our effort has thus gone into developing compact yet effective parametric models representing 
real-world incident delay signatures. In addition, we have also extended the algorithmic 
framework by incorporating more realistic “non-recurring congestion” modeling and exploitation 
logic into the algorithms. Given that nearly 50% of all traffic congestion and about 50-60% of 
non-recurring delays in urban areas are attributable to incidents5, and that vast majority of 
dynamic routing algorithms reported in the literature do not exploit this information, this extension 
has greatly enhanced the fidelity of our dynamic routing algorithms in reducing trip completion 
times. Extensive evaluations of our SDP algorithms on hypothetical networks revealed significant 
reductions in trip completion times in comparison with deterministic algorithms and static 
stochastic algorithms that do not account for non-recurring congestion information. The current 
version of our incident model is a parametric multiplicative model for the incident delay and 
accounts for the real-time traffic congestion, incident duration, incident severity, incident 
response. In the second year, we have further extended our incident model by coupling the 
parametric delay model with an incident clearance Markov model. The incident clearance model is 
a non-stationary Markov chain model in which the incident clearance probability increases with 
the duration of the incident. Our incident model is currently integrated within the recurring 
congestion modeling and algorithmic framework and further improvements (shockwave 
propagation, traffic behavior) are in our project plan.6  

Mile-stone #6: We have developed the road-network model for the Southeast-Michigan region 
and identified some set of origin-destination pairs for major freight routes. On these routes, we 
have extracted the road-network recurring and non-recurring congestion data sets and calibrated 
these links accordingly. Beginning with the second half of the second year, we have been 
implementing our static and dynamic models and algorithms in these major freight routes and 
comparing the performance differences between typical base-line routing algorithms and our 
stochastic dynamic routing algorithms. In the last quarter, we will be meeting with our 
collaborators Ford MP&L, UPS and C.H. Robinson to obtain their current distribution strategies 
(frequency of shipments, origin-destination pairs, vehicle, driver and freight characteristics) on 
this network. Via these efforts, we will develop our extensive scenarios for testing and comparison 
of our models and algorithms. 
 Thus far, our emphasis has been on the routing of a vehicle delivering from an origin to a 
destination. However, milk-run deliveries are critical to some of the logistics companies and our 
partners. In the remainder quarter and during next year, we will extend our models and routing 
algorithms to begin to support milk-run based deliveries with and without time-windows. We 
realize that the computational complexity and other challenges associated with this problem and 
thus seek efficient yet effective heuristic approaches to cope with these challenges.  
 The rest of the report describes our efforts and results to date in more detail. It is organized as 
follows: Section I describes our efforts, results, and next steps in developing dynamic routing 
algorithms in great detail. Section II outlines our dissemination efforts. Section III provides 
references. 
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6
 Further improvements to our incident model include accounting for the shockwave-based congestion state transitions and propagations for 

accurate congestion dependency between links affected by incidents. Another improvement under consideration for our incident model is to 

develop models for anticipating changes in regular traffic patterns in response to an incident for more efficient avoidance and/or navigation. 



 6

I: DEVELOPING STATIC AND DYNAMIC ROUTING ALGORITHMS  

UNDER ATIS AND REAL-TIME INFORMATION 
 

The overall goal here is to develop effective static and dynamic routing algorithms for congestion 
avoidance and reduction for commercial cargo carriers given real-time information regarding 
recurring and non-recurring congestion by Advanced Traveler Information Systems (ATIS). Vast 
majority of our R&D efforts over the past two years targeted this goal. We have extensively 
reviewed the literature on state-of-the-art static and dynamic routing algorithms, tested promising 
algorithms, recognized their strengths/weaknesses, and identified means to improve their 
performance.  
 

I.1. Introduction 
Just-in-time supply chains require reliable deliveries. However, travel times on road networks are 
unfortunately stochastic in nature. This randomness might stem from multiple sources. One of the 
most significant sources is the high volume of traffic due to commuting. This kind of traffic 
congestion is called recurrent congestion for it usually occurs at similar hours and days on a given 
network. The most used approach to deal with recurrent congestion is building ‘buffer time’ into 
the trip, i.e. starting the trip earlier to end the trip on time.  However, these buffers significantly 
increase driver and equipment idle time (i.e., reduce utilization). For example, the 2007 mobility 
report notes that congestion causes the average peak period traveler to spend an extra 38 hours of 
travel time and consume an additional 26 gallons of fuel, amounting to a cost of $710 per traveler 
per year (Urban Mobility Report 2007). Another disturbance to traffic networks stems from 
‘irregular events’—crashes, stalled vehicles, work zones, weather problems and special events—
that cause unreliable travel times and also contribute significantly to the overall congestion 
problem. The resulting congestion is labeled non-recurrent congestion for the time and frequency 
of this kind of congestion is unpredictable. The combined effect of recurrent and non-recurrent 
congestion is very significant, making trip travel times increasingly unreliable and increasing 
travel times by as much as 50% in some highly congested urban areas (Urban Mobility Report 
2007). The authoritative report also concludes that congestion continues to worsen in American 
cities of all sizes, creating a $78 billion annual drain on the U.S. economy. 

Intelligent Transportation Systems (ITS) that collect and provide real-time traffic data are now 
available in most urban areas and traffic monitoring systems are beginning to provide real-time 
information regarding incidents. In-vehicle communication technologies, both GPS and non-GPS 
based, are also enabling drivers access to this information, facilitating vehicle routing and re-
routing for congestion avoidance. We are proposing dynamic vehicle routing models that use ITS 
traffic information to avoid both recurrent and non-recurrent congestion in stochastic 
transportation networks. 

Our basic model is a non-stationary stochastic shortest path problem and we present savings 
results for several network scenarios. We developed a dynamic vehicle routing model based on 
Markov decision process (MDP) formulation. The state set of the MDP is based on the position of 
the vehicle, the time of the day, and the traffic congestion states of the roads.  Recurrent 
congestion states of the roads and their transition patterns are determined using historic and real-
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time traffic data from M-DOT’s ITS (MITS) Center. In particular, states are determined using 
Gaussian mixture model (GMM) based clustering. To address issues of ‘curse of dimensionality’ 
common to MDPs and the recognition that information from distant links are unreliable and less 
likely to influence ‘optimal’ path selection, we formulated the MDP state space such that only the 
roads/links that are in proximity to the vehicle affect local decisions. 

Our dynamic routing models also account for non-recurring congestion stemming from incidents. 
Our incident models attempt to address two questions: 1) Estimate the affect of incident on travel 
time (incident-induced travel time delay) and 2) Estimate the incident clearance time (incident 
clearance time). We estimate incident-induced link travel time delay using a decay function based 
on incident severity and duration parameters. Time required to clear the incident and restore the 
traffic is usually defined as incident clearance time and most of the delay due to incident is 
experienced during this period. We model the incident-clearance process using a Markov chain 
with an eventual absorbing state of incident clearance. 

Given that a road network may encounter both types of congestion concurrently, our dynamic 
routing models integrally account for both types of congestion and their interactions. In summary, 
our contributions are fourfold: 1) More accurate representation of recurring congestion (i.e., 
identification of congestion states and their transition patterns) through GMM based clustering, 2) 
Efficient modeling of recurring congestion (through limited-look ahead modeling), 3) Integrated 
modeling of recurring and non-recurring congestion for dynamic routing, and 4) Nonrecurring 
congestion modeling representative of realistic incident delays. 

The rest of this section is organized as follows. Relevant literature is reviewed in section I.2. 
Section I.3 establishes a dynamic vehicle routing model for the problem. In section I.4, 
experimental settings and results are presented. Section I.5 provides some concluding remarks and 
next steps.  

I.2. Literature Review 

I.2.1. Shortest Path Problem 

In the classic deterministic shortest path (SP) problem, the cost of traversing a link is deterministic 
and independent of the arrival time to the link. The stochastic SP problem (S-SP) is a direct 
extension of this deterministic counterpart where the link costs follow a known probability 
distribution. In S-SP, there are multiple potential objectives, the two most common ones being 
minimization of the total expected cost and maximization of the probability of being lowest cost 
(Sigal et al 1980). To find the path with minimum total expected cost, Frank (1969) suggested 
replacing link costs with their expected values and subsequently solving as a deterministic SP. 
Loui (1983) showed that this approach could lead to sub-optimal paths and proposed using utility 
functions instead of the expected link costs. Eiger et al. (1985) showed that Dijkstra’s algorithm 
(Dijkstra, 1959) can be used when the utility functions are linear or exponential. 

Stochastic SP problems are referred as stochastic time-dependent shortest path problems (STD-
SP) when link costs are time-dependent. Hall (1986) first studied the STD-SP problems and 
showed that the optimal solution has to be an adaptive decision policy (ADP) rather than a single 
path. In an adaptive decision policy (ADP), the node to visit next depends on both the current node 
and the time of arrival at that node, and therefore the standard SP algorithms cannot be used. Hall 
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(1986) employed the dynamic programming (DP) approach to derive the optimal policy. Bertsekas 
and Tsitsiklis (1991) proved the existence of optimal policies for (STD-SP) when arc costs are 
positive and/or negative. Later, Fu and Rilett (1998) modified the method of Hall (1986) for 
problems with link costs as continuous random variables. They showed the computational 
intractability of the problem based on the mean-variance relationship between the travel time of a 
given path and the dynamic and stochastic travel times of the individual links. They also proposed 
a heuristic in recognition of this intractability. Bander and White (2002) modeled a heuristic 
search algorithm AO* for the problem and demonstrated significant computational advantages 
over dynamic programming, when there exists known strong lower bounds on the total expected 
travel cost between any node and the destination node. Fu (2001) discussed real-time vehicle 
routing based on the estimation of immediate link travel times and proposed a label-correcting 
algorithm as a treatment to the recurrent relations in DP. Waller and Ziliaskopoulos (2002) 
suggested polynomial algorithms to find optimal policies for stochastic shortest path problems 
with one-step link and limited temporal dependencies. Gao and Chabini (2006) designed an ADP 
algorithm and proposed efficient approximations to their algorithm by using the value of 
information in a both time and link dependent stochastic network. An alternative routing solution 
to the adaptive decision policy is a single path satisfying an optimality criterion. For identifying 
paths with the least expected travel time, Miller-Hooks and Mahmassani (2000, 2003) proposed a 
modified label-correcting algorithm.  

I.2.2. Recurrent Congestion Modeling and Real-Time Information 

All of the studies on STD-SP assume deterministic temporal dependence of link costs, with the 
exception of Waller and Ziliaskopoulos (2002) and Gao and Chabini (2006). In most urban 
transportation networks, however, the change in the cost of traversing a link over-time is 
stochastic and there are very few studies addressing this issue.  Most of these studies model this 
stochastic temporal dependence through Markov chain modeling and propose using the real-time 
information available through ITS systems for observing Markov states. In addition, all of these 
studies assume that recourse actions are possible such that the vehicle's path can be re-adjusted 
based on newly acquired congestion information. Accordingly, they identify optimal adaptive 
decision policies. Psaraftis and Tsitsiklis (1993) is the first study to consider stochastic temporal 
dependence of link costs and to suggest using online information en route. They considered an 
acyclic network where the cost of outgoing links of a node is a function of the environment state 
of that node and the state changes according to a Markovian process. They assumed that the link’s 
state is learned only when the vehicle arrives at the source node and that the states of nodes are 
independent. They also proposed a DP procedure to solve the problem. Polychronopoulos and 
Tsitsiklis (1996) consider a problem when recourse is possible in a network with dependent 
undirected links and the link costs are time independent. They proposed a DP algorithm to solve 
the problem and discussed some non-optimal but easily computable heuristics. Azaron and 
Kianfar (2003) extended Psaraftis and Tsitsiklis (1993) by evolving the states of current node as 
well as its forward nodes with independent continuous-time semi-Markov processes for ship 
routing problem in a stochastic but time invariant network. Kim et al. (2005a) studied a similar 
problem as in Psaraftis and Tsitsiklis (1993) except that the information of all links are available 
real-time. They assume that a link can be in two states, either congested or uncongested, based on 
the link velocities. They proposed a DP formulation where the state space includes states of all 
links, time, and the current node. They reported substantial cost savings from a computational 
study based on the Southeast-Michigan’s road network. They however stated that the state space 



 9

of the proposed formulation becomes quite large making the problem intractable. To address the 
intractable state-space issue, Kim et al. (2005b) proposed state space reduction methods.  

I.2.3. Non-recurring Incidents and Incident Clearance 

All of the shortest-path studies reviewed consider the stochastic link costs which are mostly 
attributable to recurring congestion. However, about 55% of all traffic congestion is attributable to 
non-recurring incidents such as accidents, bad weather, work zones and special events (FHWA 
report, 2004). Incident-induced delay time estimation models are widely studied in the 
transportation literature. These models can be categorized into three based on the approaches 
followed: shockwave theory (Wirasinghe, 1978; Al-Deek et.al, 1995; Mongeot and Lesort, 2000), 
queuing theory (Cohen and Southworth, 1999; Olmstead, 1999; Henderson et al., 2004, Baykal-
Gursoy et.al. 2008), and statistical (regression) models (Gaver, 1969; Lindley, 1987; Giuliano, 
1989; Garib et.al., 1997). All of these modeling approaches have certain requirements such as 
loop-sensor data or assumptions regarding traffic/vehicle behavior. For instance, the shockwave 
theory based models require extensive loop sensor data for accurate positioning and progression of 
the shockwave. Both the queuing and shockwave theory based models require assumptions about 
the vehicle arrival process. Regression models often cannot handle missing data without 
compromising accuracy. 

In all these three types of models, the delay due to an incident is often a function of incident 
duration. Thus, the estimation of incident duration is fundamental and there are various 
distributions suggested. Gaver (1969) derived probability distributions of delay under flow 
stopping. Gamma and exponential distributions are also suggested as good representations of 
incident duration distribution (Noland and Polak, 2002). 

Integrated Modeling of Recurrent and Non-recurring Congestion 

Modeling incident delay in conjunction with vehicle routing is in its nascence. Ferris and 
Ruszcznski (2000) present a problem in which links with incidents fail and become permanently 
unavailable rather than incidents being cleared after some time. They model the problem as an 
infinite-horizon Markov decision process (MDP). Thomas and White (2007) consider the incident 
clearance process and adopt the models in Kim et al. (2005a) for routing under non-recurring 
congestion. However, they do not account for recurring congestion and assume link costs are time-
invariant and deterministic. They model the incident clearance time as a non-stationary Markov 
chain with transition probabilities following a Weibull distribution with an increasing 
instantaneous clearance rate. To model incident-induced delay, they multiply the link’s cost by a 
constant and time-invariant scalar.  

I.3. Dynamic Routing Model 

I.3.1 Recurrent Congestion Modeling 

Let the graph ( ),G N A=
 
denote the road network where N  is the set of nodes (intersections) and 

A N N⊆ × is the set of directed arcs between nodes. For every node pair ',n n N∈ , there exists an 

arc ( ), 'a n n A≡ ∈  if and only if there is a direct road that permits traffic flow from node n  to 'n . 

Given an origin-destination (OD) node pair, we treat the trip planner’s decision problem to be that 
of selection of an arc at each decision node such that the expected total trip travel time is 
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minimized. We denote the origin and destination nodes with 0n  and 
d

n , respectively. We 

formulate this problem as a finite horizon Markov decision process (MDP) where the travel time 
on each arc follows a non-stationary stochastic process.  

An arc ( ), 'a n n A≡ ∈  is labeled as observed if its real-time traffic data (e.g., velocity) is available 

through the real-time traffic information system. An observed arc’s traffic congestion can be in 

r +∈ Ζ  different states at time t . These states represent arc’s congestion level and are associated 
with the real-time traffic velocity on the arc. We begin with discussing how to determine an arc’s 
congestion state given the real-time velocity information and defer the discussion on estimation of 

the congestion state parameters to Section 1.4.2.  Let ( )1i

ac t
−  and ( )i

ac t
 
for 1, 2, ,i r= …  denote the 

cut-off or threshold velocities used to determine the state of arc a  given ( )av t , e.g., the velocity at 

time t  on arc a .  We further define ( )i

as t  as the ith traffic congestion state of arc a  at time t , i.e. 

( ) { } { }1 Congested 1as t = =  and ( ) { } { }Uncongestedr

as t r= = . Congestion state, ( )i

as t  of arc a  at 

time t  can then be determined as: 

( ) ( ) ( ) ( ){ }1, if i i

a a a a
s t i c t v t c t−= ≤ <  

Consistent with much of the literature, we assume that the congestion state of an arc evolves 
according to a non-stationary Markov chain. We also assume that the link traverse time given the 
congestion state follows a statistical distribution, in particular Gaussian, the parameters can be 
dependent on time of travel.  

Let us suppose that all arcs in the network are observed and let ( )S t  denote the traffic congestion 

state vector for the entire network, i.e., ( ) ( ) ( ) ( ){ }1 2 | |, ,...,
A

S t s t s t s t=  at time t . For presentation 

clarity, we will suppress the ( t ) in the notation whenever time reference is obvious from the 
expression and when we suppress the arc subscript then it represents the whole network. We 

denote a realization of ( )S t  by ( )s t . 

It is assumed that arc traffic congestion states are independent from each other and exhibit first-

order Markovian property. In order to estimate the pattern of state transitions for any arc at time t , 

we model the distribution of arc velocities from two consecutive periods, t  and 1t + , jointly. 

Accordingly, time-dependent single-period state transition probability from state ( )i

as t to state 

( )1j

as t + , denoted by ( )ij

a
tα , is estimated from this joint velocity distribution as follows:  

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )

1 1 1 1

1 1

1 |

< 1 1 1

<

ij

a a a

i i j j

a a a a a a

i i

a a a

t P s t j s t i

P c t V t c t c t V t c t

P c t V t c t

α

− − − −

− −

= + = =

≤ ∩ + < + < +
=

≤
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Let ( ), 1aT t t +  denote the matrix of state transition probabilities for arc a  from time t  to time 

1t +  ( ( ) ( ), 1 ij

a a
ij

T t t tα + =   ). Given the assumption that the congestion state transitions for any 

given arc follow a first-order Markov chain, 

( ) ( ) ( ) ( ){ } ( ) ( ){ }0| 1 , 2 ,..., | 1
a a a a a a

P s t s t s t s t P s t s t− − = − . Given the assumption that arc 

congestion states are independent of other arcs’ states, 

( ) ( ) ( ){ } ( ) ( ){ }
1 2 1 1 1

| , 1 | 1
a a a a a

P s t s t s t P s t s t− = − .  Let us suppose that the network is in state ( )S t
 

at time t  and we want to find the network state ( )S t δ+  where δ  is a positive integer number. 

Given our arc independence assumption, the joint state transition probability is simply the product 
for the state transition probabilities for individual arcs: 

( ) ( )( ) ( )
1

| ( ) | ( )
A

a a

a

P S t S t P s t s tδ δ
=

+ = +∏  

The δ  period transition probability for each arc can be calculated from the standard Kolmogorov 
equation: 

( ) ( ) ( ) ( ), 1 ...ij ij ij

a a a a
ij ij ij

T t t t t tδ α α α δ     + = × + × × +       

With the assumption that arc velocities follow normal distribution, the time to traverse an arc can 
be modeled as non-stationary normal distribution. We further assume that the arc’s travel time 
depends on the congestion state of the arc at time of departure (equivalent to arrival time whenever 
there is no waiting). It can be determined according to the corresponding normal distribution: 

( ) ( ) ( )( )2, , ~ , , ,
a a a a a

t a s N t s t sδ µ σ  

where, ( ), , at a sδ
 
is travel time on arc a  at time t  with congestion state ( )as t , and ( ),a at sµ  and 

( ),a at sσ  are the mean and standard deviation of travel time on arc a  at time t , respectively, 

under congestion state ( )as t . 

We assume that the objective of dynamic routing is to minimize the expected travel time based on 
real-time information. The nodes (intersections) of the network represent decision points where a 
routing decision can be made. Since our algorithm is also applicable for a network with incident, 
in the next section, we will discuss incident modeling and then integration of recurring congestion 
and incident driven non-recurring congestion. 

I.3.2 Incident Modeling 

The incident modeling section addresses two questions: 1) With what probability the incident will 
be cleared and 2) How much delay the driver will experience on an incident arc. First we will 
explain the logic behind incident clearance modeling, then, our incident delay function, and 
finally, we will integrate incident modeling with the dynamic routing problem. 

I.3.2.1 Incident Clearance 
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We assume that incidents undergo a series of stages (e.g., fresh incident, response team arrives to 
incident scene, partial incent clearance …) and that these stage transitions exhibit the Markov 

property. For ease of presentation, we limit the number of states to two { },Incident Clear . We also 

assume that information regarding these states is available to the driver instantaneously without 

any delay. Let, ( )
a

x t  be a random variable representing the incident state of arc a  at time t , i.e. 

( ) { } { }, 1,2ax t Incident Clear= = . Then, the status of the observed arcs is given by the vector 

{ }1 2 | |( ) ( ), ( ),..., ( )
A

X t x t x t x t= . Although the transitions occur in continuous time, we discretize the 

transition times for consistency with our whole model. Since the incidents that cause congestion 
appear infrequently and are cleared, such as accidents, we assume that incident carry an absorbing 
state ‘clear’.7 Furthermore, if an incident occurs en route, we may simply re-optimize the path 
treating the approaching node of the driver is the starting node. With these assumptions, a one-step 
incident transition matrix can be setup as follows: 

( )
1 ( ) ( )

, 1
0 1

t t
IT t t

γ γ− 
+ =  

 
. 

where ( )tγ  is the one-step transition of a link state from incident state to cleared state at time t . 

Note that the transition probability element is independent from arc.8  Intuitively, the longer the 
presence of a particular incident the higher the likelihood it will clear in the next interval. This 

suggests that ( ) ( 1)t tγ γ> + . The δ  period state transition probability of incident clearance can be 

calculated once again using the Kolmogorov equation: 

( )
1 ( ) ( ) 1 ( 1) ( 1) 1 ( ) ( )

, ... .
0 1 0 1 0 1

t t t t t t
IT t t

γ γ γ γ γ δ γ δ
δ

− − + + − + +
+ = × × ×

     
     
     

 

I.3.2.2 Incident-Induced Delay 

We assume incident delay function,
 

( , , , )xκ ρ ϕΘ , is based on incident severity ( )κ , 

duration/stage ( )ρ , incident response ( )ϕ , and incident realization ( )x  of the arc. Our incident 

delay model is a multiplicative model in that ( )Θ ⋅  represents the factor by which the arc travel 

time under same conditions (congestion state and the time) will be increased. Specifically, given 

the arc travel time without incident, ( ), , , 2a at a s xδ =  and incident parameters ( ), ,κ ρ α , the arc 

travel time under incident is expressed as: 

( ) ( )( ) ( ), , , 1 1 , , , , , 2
a a a a

t a s x t a s xδ κ ρ ϕ δ= = + Θ =  

In the expected sense the travel time of arc a  at time t  is: 

                                                           

7
 This is not appropriate for settings such as lane closures in work zones and can be handled using an incident 

Markov chain with a single persistent ‘incident’ state. 

8
 Given data limitations (i.e., infrequent occurrence of identical incidents at same location), it is difficult to create arc 

dependent incident parameters statistically. 
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( ) ( )( ) ( )
2

1

, , , ( ( ) ) 1 , , , , , , 2a a a a a

x

t a s x P x t x x t a s xδ κ ρ ϕ δ
=

= = + Θ =∑  

where ( ), , , 2 0xκ ρ ϕΘ = = . Note that incident duration/stage, ρ , depends on the duration 

between incident occurrence time ( 0
inct ) and arrival time to the arc (t), i.e. { }0 0:inc inct t t tρ = − ≥ . We 

make the following assumptions for the incident delay function: 

1. Incident delay is only experienced on the incident arc (no propagating delay effect in the 
remainder of the network) 

2. Incident delay function, ( )Θ ⋅ , is non-increasing function of ρ  

3. Incident delay function, ( )Θ ⋅ , is such that total delay associated by deciding to wait at a 

node, waiting time plus the incident delay, is not less than the case without waiting. 
4. Incident delay function is a multiplicative factor which amplifies the incumbent arc travel 

time. This factor is independent of the arc.  

In practice, the incident effect propagates in the network in the form of a shockwave after a certain 
duration following the incident. In this incident model, our goal is investigate the impact of 
incidents in the travel time and therefore we chose to focus on the most important ingredient, 
namely delay on in the incident arc. Hence, we believe Assumption 1 is acceptable under certain 
scenarios. One scenario is where the incident duration is not long enough that vehicles divert to 
alternative arcs or the capacity of alternative arcs is sufficiently large to accommodate the 
diversion without any change in their congestion state.  Assumption 2 is based on the fact that 
there is an incident response and clearance mechanism which mediates the incident delay over 
time. Assumption 3 is consistent with our network and travel time assumptions where we assume 
that waiting at a node (or on an arc) is not permitted and/or does not provide travel time savings. 

 
Multiplicative model assumption (Assumption 4) is reasonable since the travel time delay of a 
particular incident depends on the both the incident characteristics and incumbent travel time on 
the arc. We assume that arcs are comparable (i.e., same number of lanes) hence the multiplicative 
incident delay factor is independent of the arc.  

Herein, we assume the following exponential function form for the incident delay. 

( )
( )01 1

, , ,
inct t

x e e
ρ

ϕ ϕκ ρ α κ κ

   
− − −   
   Θ = =  

where , , 0ρ κ ϕ ≥ , 1x = , and 0
inct t≥ .  

I.3.3 Integrating Recurrent and Non-Recurrent Congestion and Cost Calculation 

We assume that the objective of dynamic routing is to minimize the expected travel time based on 

real-time information where the travel starting point is node 0n  and destination point is node 
d

n . 

Assume there is a feasible path between ( )0 , dn n  where a path ( )0 1,.., ,..,k Kp n n n −=  is defined as 

sequence of nodes such that 1( , )
k k k

a n n A+≡ ∈ , 0,.., 1k K= −  and K  is the number of nodes on 

the path. We define set 1( , )
k k k

a n n A+≡ ∈  as the current arcs set of node 
k

n , and denoted with 
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( )kCrAS n . That is, ( ) { }1: ( , )k k k k kCrAS n a a n n A+≡ ≡ ∈  is set of arcs those emanating from node 

k
n . 

Assume each node (intersections) on a path is a decision stage (or epoch) where a routing decision 

(which node to select next) can be made. Let 
k

n N∈  be the location of the k
th decision stage, 

k
t is 

the time at k
th decision stage where { }1,...,kt T∈ , 1K

T t −> . Note that we discretized the time. We 

also define the following sets for arcs to reduce the state space. ( )kScAS a , successor arcs set of 

arc 
k

a ,
 

( ) { }1 1 1 2: ( , )k k k k kScAS a a a n n A+ + + +≡ ≡ ∈  i.e., set of outgoing arcs from the destination 

node ( 1k
n + ) of arc 

k
a . ( )kPScAS a , post-successor arcs set of arc 

k
a , 

( ) { }2 2 2 3: ( , )k k k k kPScAS a a a n n A+ + + +≡ ≡ ∈  i.e., set of outgoing arcs from the destination node 

( 2k
n + ) of arc 1k

a + . 

Since total trip travel time is an additive function of individual arc travel times on the path plus a 
penalty function measuring earliness/tardiness of arrival time to the final destination, dynamic 
route selection problem can be modeled as a dynamic programming model. The state of the system 

at k
th decision stage is denoted by 

1 2 ,( , , , )
k kk k kka an t s X

+ +∪Ω . It is composed of the state of the 

vehicle and network thus characterized by the current node (
k

n ), arrival time (
k

t ), and congestion 

(
1 2 ,k k ka as

+ +∪ ) state of arcs 1 2k ka a+ +∪  where ( ){ }1 1:
kk ka a ScAS a+ + ∈

 
and 

( ){ }2 2:
kk ka a PScAS a+ + ∈ , and incident states (

k
X ) of the network, i.e. ( )k kX X t≡ . Action space 

for ( )
1 2 ,, , ,

k kk k kka an t s X
+ +∪Ω  is the current arcs set of node 

k
n , denoted with ( )kCrAS n . 

At every decision stage, the trip planner evaluates the alternative arcs from ( )kCrAS n  based on 

the remaining expected travel time. The expected travel time at a given node is composed of 
minimum expected travel time on the next outgoing arc chosen and expected travel time of the 

next node. Let’s { }0 1 1, ,..., Kπ π π π −= be the set of policies for the trip. For a given state 

( )
1 2 ,, , ,

k kk k kka an t s X
+ +∪Ω , policy ( )k kπ Ω  is a deterministic Markov policy which chooses the 

outgoing arc from node 
k

n , i.e., ( ) ( )k k ka CrAS nπ Ω = ∈ . Therefore, the expected travel cost 

given the policy vector { }0 1 1, ,..., Kπ π π π −=  is as follows: 

( ) ( ) ( )( )
2

0 0 0 0 0 1 1

0

, , , , ,
k

K

K K k k k k k

k

F n t S X E g g
δ

π δ
−

− −
=

 
= Ω + Ω Ω 

 
∑

 

where ( )0 0 0 0, , ,n t S X  is the starting state of the system. 
k

δ is random travel time at decision stage 

k, i.e., ( ) ( ) ( )( ) ( )( ), , , 1 , , ,
k k k k a k a k

t s t x t xδ δ π κ ρ ϕ≡ Ω + Θ and ( ), , , 0xκ ρ ϕΘ =  if 2x =  (an arc 

without incident). ( , , )
k k

g a δΩ is cost of travel on arc ( ) ( )k k k ka CrAS nπ= Ω ∈  at stage k , i.e., if 

travel cost is a function (φ ) of the travel time, then ( ) ( )( , , )k k k k kg π δ φ δΩ Ω ≡ .
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Minimum expected travel time can be found by minimizing ( )0 0 0 0, , ,F n t S X  over the policy 

vector { }0 1 1, ,..., Kπ π π π −=  as follows: 

( )
{ }

( )
0 1 1

*

0 0 0 0 0 0 0 0
, ,...,

, , , min , , ,
K

F n t S X F n t S X
π π π π −=

=  

where 
{ }

( )
0 1 1

*

0 0 0 0
, ,...,

arg min , , ,
K

F n t S X
π π π π

π
−=

= . Hence, the Bellman (cost-to-go) equation for the 

dynamic programming model can be expressed as follows: 

( ) ( ) ( ){ }* *

1min ( , , )
k k

k k k k k kF E g F
π δ

π δ +Ω = Ω Ω + Ω  

For a given policy decision ( ) ( )k k k ka CrAS nπ Ω = ∈ , we can re-express the cost-to-go function 

by writing the expectation in explicit form such that: 

( ) ( ) ( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )

, 1 , 11 2

1

1 2

1 1 21 1

1 1 1 1 1 1

1 1

,

, , ,

, , , | | , , , , , ,

|

| , , ,

k

a k a kk k

k

k k

k k k

k k k k k k k k k k k k k

k k k

s s

k k k k k k k k

X

k

k k k

a a

a a a

F n t s X a P n t S X a g a

P s t s t P s t

P X t X t F n t S X

δ

δ δ

+ ++ +

+

+ +

+ + +

∪

+ +

+ + + + + +

+ +

= Ω +



∑

∑ ∑

∑

 

where ( )| , , ,k k k k kP n t S Xδ  is the probability of travelling arc 
k

a  in 
k

δ  periods and calculation of 

k
δ  is explained above for different states. ( )

2 11, ( )
k kkaP s t

+ ++  is the state probability of arcs 

( )2 2: kk ka a PScAS a+ + ∈  in stage 1k + . This probability is calculated from the frequency of a state 

at a given arc and time.  

Using the backward induction we could solve ( )*

k kF Ω  for 1, 2,..,0k K K= − − , where 

( )1 1 1,K K Kn t− − −Ω = Ω  , 1K
n −  is destination node, and ( )1 1 0K KF − −Ω =  if  1K

t T− ≤ . A cost of penalty 

is accrued whenever 1K
t T− > . 

I.4. Experimental Studies 

In this section we will demonstrate our proposed algorithm and methods solution quality on a 
network from South-east Michigan with real-time traffic data from M-DOT’s MITS Center and 
Traffic.com. All algorithm and methods were coded in Matlab 7 and executed on a Pentium IV 
machine with 1.6 GHz speed processor and 1024 MB RAM under the Microsoft Windows XP 
operating system environment. 

Our experimental study is outlined as follows: Section I.4.1 describes two road networks and 
traffic data information. Section I.4.2 explains the experimental settings and modeling recurrent 
congestion.  Savings of dynamic policy under recurrent-congestion for a sub-network and 5 OD 
pairs are given in section I.4.3. The experimental setup for the sub-network with incident and its 
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savings are given in the Section I.4.4. The last section summarizes the results and gives some 
insights about them. 

I.4.1 Networks and Traffic Data  

This section describes two road networks considered for our experiments along with traffic data 
information extraction and processing steps. Our methodology is mainly applied to the South-East 
Michigan freeway and highway road network, an urban area, that includes Detroit metro area 
(Figure 1). The network has 30 nodes and a total of 98 arcs with many observed arcs and few 
unobserved arcs (all the Michigan freeways, including M-24 and M-39, and city/local roads). The 
real-time traffic data of observed arcs is collected by MDOT ITS Center for 23 weekdays from 
January 21 to February 20, 2008 with a one minute resolution (involving literally hundreds of loop 
sensors). This raw speed data is cleaned with a series of procedures from Cambridge Systematics 
[1] to assure quality standards of the data.  

 

Figure 1 : South-East Michigan road network 

We took a small part of our full network and labeled as stylized network (Figure 2) to illustrate the 
incident modeling methods and results better. The stylized network (Figure 2) has 5 nodes and 6 
observed arcs. Arcs lengths and information are as shown in Table 1. 

 

Figure 2 : The South-East Wayne County road stylized network used in Experiment Set #1 
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Table 1 : Stylized Network Information for Experiment Set #1 

Arc 

ID 
Freeway 

Length 

(miles) 

FROM TO 

Node # Description (Exit #) Node # Description (Exit #) 

1 I-94 1.32 5 216 26 215 

2 M-8 1.75 4 56A (I-75) 30 7C (M-10) 

3 I-75 3.13 4 56A 5 53B 

4 I-75 2.81 5 53B 6 50 

5 M-10 3.26 30 7C 26 4B 

6 M-10 1.42 26 4B 6 2A 

 

We consider node 4 as the origin node and node 6 as the destination node of the trip. Speed data of 
the arcs are plotted in Figure 3. As can be seen from the figure, the traffic speeds are highly 
stochastic and non-stationary, varying by time of the day. The mean and standard deviations of 
arcs speeds during the day are plotted in Figure 4.  
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Figure 3 : Raw traffic speeds for arcs on stylized network (mph) at different times of the day. 
Data: Weekday traffic from January 21 to February 20.  

Each color represents a distinct day of 23 days. 

I.4.2 Recurrent Congestion Modeling 

The methodology of implementing real data to the dynamic policy algorithm needs estimating 
transition probabilities between states for each arc and parameters of arcs travel time for each 
state. Number of congestion states on each arc is determined using the Gaussian Mixture Models 
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(GMMs). In particular, it is according to the greedy learning GMMs of Verbeek (2003). In order 
to estimate the classes, two consecutive periods’ velocities are modeled as bi-variate joint 

Gaussian distribution, i.e: velocity data at time t as x  axes and time 1t +  as y axes.  GMMs 

identify the classes as ellipses where center of ellipse is class mean ( )1,i i

t t
µ µ + . Ellipse has the 

eigenvectors of the covariance matrix as axes and radii of twice the square root of the 

corresponding eigen value. The ellipses are labeled such that 0( ,.., ,.., )i r

t t t
µ µ µ is an increasing 

series. The mid-point of the line from i th ellipse center to ( 1)i + th ellipse center is denoted with 

( )i

ac t  ( i th cut-off speed for arc a at time t ) , that is ( ) 1( ) / 2i i i

a t tc t µ µ += + . We assume ( )0 0ac t =  

mph and ( ) 80r

ac t = mph. 
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Figure 4 : Traffic mean speeds (mph) and standard deviations by time of the day for arcs on 
stylized network. (15 minute time interval resolution) 

Although our method can handle any number of recurring congestion states, for the sake of 
simplicity, we limit here the number of states to two states: congested and uncongested. Two 
different examples are given which depicts the evolution of classifications at two different times of 
the day. In Figure 5 (a), joint plots of traffic speeds in consecutive periods at 8:30 am, at arc 1 is 
plotted and in Figure 5 (b) the classes are shown after partitioning with GMMs.  Each class is 
shown as an ellipse which has the eigenvectors of the covariance matrix as axes and radii of twice 
the square root of the corresponding eigenvalue.  
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Figure 5 : (a) Joint plots of traffic speeds in consecutive periods for modeling state-transitions at 
8:30 am, at arc 1 (b) Probability distribution of speed at 8:30 am, at arc 1 generated by GMM (c) 
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Figure 6 : (a) Joint plots of traffic speeds in consecutive periods for modeling state-transitions at 
10:00 am, at arc 1 (b) Probability distribution of speed at 10:00 am, at arc 1 generated by GMM 

(c) Class identified with GMM 
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Figure 7: Recurrent congestion state-transition probabilities for arcs on stylized network. α: 

congested to congested transition; β: uncongested to uncongested transition probability (15 minute 
time interval resolution) 
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We assume if GMMs suggested two classes than the mid-point of the line from one ellipse center 
to the other is the cut-off speed. For instance, in Figure 5 (c) the congested class’ center x-axes 
value (time: 8:30) is 53.3mph and the uncongested class’ center x-axes value is 70.5mph. This 
implies that the cut-off speed at 8:30 am for arc 1 is 61.9mph.  

In Figure 6 (a) joint plots of traffic speeds in consecutive periods at 10:00 am, at arc 1 is plotted. 
In Figure 6 (c) there is only one class suggested by GMMs. So, we assume there is no cut-off 
speed and this class belongs to the uncongested state. Using these cut-off speeds and speeds at 
each class, we calculated travel time distribution parameters and the transition matrix elements as 
explained earlier. The state transition elements alpha (congested to congested) and beta 
(uncongested to uncongested) are illustrated in Figure 7. Note that the state transitions to the same 
states are more likely in high traveler demand time periods, which is the case in practice. 

The parameters mean and standard deviations, of each state for all arcs during the day are 
illustrated in Figure 8 and Figure 9 respectively. 
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Figure 8 : Mean arc travel times of arcs on stylized network in minutes.  

(15 minute time interval resolution) 

I.4.3 Results of Modeling Recurrent Congestion 

In this section the savings of our methodology is shown based on two different network under 
recurrent congestion. First we will discuss the results of stylized network. As stated earlier, we 
consider node 4 as the origin node and node 6 as the destination node of the trip for this network. 
From origin to destination there are 3 different path options could be taken (path 1: 4-5-6; path 2: 

4-5-26-6; and path 3: 4-30-26-6). Note that, our aim is not to identify an optimal path; our aim is 
to identify the best policy based on the time of the day, location of the vehicle and the traffic state 
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of the network. However, any commercial logistics software tries to define a best (static) path 
from an origin to the destination. In this context, the commercial logistics software selects the best 
path as path1: 4-5-6, since it is dominant to others most of the time during the day with assuming 
the historical speed data is available to the software. We will identify the path 1 as baseline path 
and show the savings with regard to baseline path. We simulated the trip 10.000 times for each 
starting state combinations (since there are 6 arcs, there are 26=64 network traffic state 
combinations) throughout the day with 15 minutes intervals. Figure 10 (a) shows baseline path and 
Figure 10 (b) shows dynamic policy simulated travel times for every state combinations of the 
stylized network with sample size 10.000. We define savings as following: 

Savings (%) 100
DP B

t t
t B

t

T T

T

 −
= × 
 

 . 

where DP

t
T is time to complete the travel under dynamic vehicle routing policy and B

t
T  is time to 

complete the travel on the baseline path at time t. Figure 11 (a) shows the savings of each state 
combinations  of dynamic policy over baseline path during the day and Figure 11 (b) shows the 
average savings for all states during the day. 
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Figure 9 : Arc travel times standard deviations of arcs on stylized network in minutes. (15 minute 
time interval resolution) 

Beside stylized network we identified also 5 other origin and destination (OD) pairs (Table 2) in 
Southeast Michigan road network (Figure 1) to investigate the savings by using real-time traffic 
information in dynamic policy. Unlike the stylized network these OD pairs has both observed and 
unobserved paths and each has several alternative paths from origin node to destination node. 
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Figure 10: (a) Baseline path and (b) dynamic vehicle routing policy simulated travel times for all 
state combinations of the stylized network (each color represents a different state combination). 
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Figure 11: (a) For all state combinations, and (b ) the average savings of all state combinations  in 
percentages of dynamic policy over baseline policy during the day. (15 minute time interval 

resolution) 

Table 2 : Origin-Destination pairs selected from South-East Michigan road network 

OD 

Pair 

ORIGIN DESTINATION 

Node # Description (Intersection) Node # Description (Intersection) 

1 2 I-75 & US-24 21 I-275 & I-94 
2 12 I-96 & I-696 25 I-96 & I-94 
3 19 M-5 & US-24 27 I-696 & I-94 
4 23 I-94 & M-39 13 I-96 & I-275 
5 3 I-75 & I-696 15 I-96 & M-39 

 

We identify the baseline path of each OD pair as explained for stylized network and show the 
savings with regard to their baseline paths. We simulated the trip 10.000 times for each starting 
state combinations of corresponding OD pair throughout the day with 15 minutes intervals.  

Figure 12 shows the savings of each state combination of dynamic policies over baseline paths 
during the day for each OD pairs.  
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Figure 12 : For different OD pairs, savings percentages of dynamic policy over baseline path 

during the day for all states 

Figure 13 shows the average savings for all states during the day. 
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Figure 13 : For different OD pairs, average savings percentages of dynamic policy over baseline 

path during the day for all states 
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I.4.4 Impact of Modeling Incidents 

In this section, the stylized network (Figure 2) is experiencing nonrecurring congestion beside 
recurrent congestion. We derive the dynamic routing policies in two ways. Initially, the dynamic 
policy does not account for non-recurring congestion while there is one incident on the network. 
Later, we allow the dynamic policy to explicitly account for non-recurring congestion information 
to dynamically update the route. The incident settings are assumed to be the same for all incidents. 
We show the results for 6 starting times during the day. The incident clearance decay function 

severity parameter is set to, κ =2 and response or clearance rate parameter is set to α =10 (Fast). 
The Weibull distribution, models how much time the incident arc spends in the incident state, 
shape parameter is set to 2, and scale parameter is set to 2. 
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Figure 14: Savings realized from modeling non-recurring incidents (besides recurring congestion) 
under incidents on arc 3, 4 or 6. (a) Trip starts at the time of the incident; (b) trip starts 3 minutes 

after incident has occurred 

The results presented here (Figure 14) pertain to incidents on arc 3, 4 or 5. We studied two 
different scenarios: first, the incidents are created on one of these arcs at the same instant the 
vehicle departs the starting node; second is the incidents are created on one of these arcs 3 minutes 
before the vehicle departs the starting node. For example, if the vehicle departs the origin node at 
10AM, we create an incident on arc 3 at 10AM as well. Here we presented the savings realized 
from modeling non-recurring incidents only (besides recurring congestion) and calculated as 
follows: 

&

Savings (%) 100
R NR R

t t
t R
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T T

T

 −
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. 

where &R NR

t
T is time to complete the travel with dynamic policy that models both recurring and 

non-recurring congestion and R

t
T  is time to complete the travel with dynamic policy that models 
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only recurring congestion at time t. The savings for the first scenario is presented in Figure 14(a). 
Since the arc 3 is very close to the origin node and on the baseline path the effect of incident is 
high and savings are higher. Arc 4 is also on the baseline path and given that it is a downstream 
arc (i.e., it is not connected to the origin node), by the time the vehicle reaches there, the incident 
is partially cleared, reducing the impact of the incident on arc travel time and the savings is less. 
Arc 6 is also a downstream arc but not on the baseline path. However, the dynamic policy that not 
take into account the non-recurrent congestion takes this arc more (Figure 15) than the dynamic 
policy that take into account the non-recurrent congestion and this leads to savings. Due to space 
constraints, we are not presenting results from incidents on other arcs. The results for other arcs 
vary based on similar reasons. The results for the second scenario are presented in Figure 14(b). 
The savings for this scenario is less than the other since the incident partially or fully cleared until 
we reach the incident arcs. Similarly, since the arc 3 is very close to the origin node and on the 
baseline path the effect of incident is high and savings are higher. Arc 4 and 6 are downstream 
arcs (i.e., it is not connected to the origin node) and by the time the vehicle reaches those arcs the 
incident is partially/fully cleared. Thus, there is little savings or not. 
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Figure 15 : Path distribution during the day (a) without incident, (b) with an incident on arc 3 and 
trip starts at the time of incident. 

I.4.5 Experiment Conclusions 

Experiments clearly illustrate the superior performance of the SDP derived dynamic routing 
policies when they accurately account for recurrent congestion (i.e., they differentiate between 
congested and uncongested states) and non-recurrent congestion attributed to incidents (e.g., 
accidents). To show the effects of taking into account recurrent and non-recurrent congestion first, 
we present results for the case where the network experiences no incidents but experiences 
recurrent congestion. Later, we present results for the case where the network is also experiencing 
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non-recurring incidents besides recurrent congestion. Future work will work to extend the quality 
and efficacy of our dynamic routing models and work to relax some of the assumptions (e.g., 
traffic conditions on adjacent arcs are independent). 
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II: RESULTS DISSEMINATION 
 

II.1 Project Website 
We have established a Microsoft SharePoint Website for the project that helps us track/store all 
project related documents/information in one place. Currently, it carries all our literature, data sets, 
code, weekly research group meeting minutes, long-term mile-stones, short-term tasks, calendar, 
and contacts. While we currently control access to this website through password protection, we 
are in the process of opening parts of the website for anonymous access. The screen shots below 
highlight different parts of our website. 

Homepage 

 

Literature 

 

Tasks 

 

Meeting Minutes 

 

II.2 Conference Activity 

Conference Presentations: 

1. Guner, A., Chinnam, R.B., and Murat, A., “Dynamic Vehicle Routing under Real-time 
Congestion and Incident Information for JIT Logistics,” INFORMS 2008 Annual Meeting, 
Washington D.C. (Oct 12-15, 2008). 
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2. Guner, A., Chinnam, R.B., and Murat, A “Modeling Traffic Incidents for Dynamic Vehicle 
Routing Applications,” INFORMS 2008 Annual Meeting, Washington D.C. (Oct 12-15, 
2008). 

3. Guner, A., Chinnam, R.B., Murat, A., and Saripalle, M., “Enabling Congestion Avoidance 
in Stochastic Transportation Networks Under ATIS,” INFORMS 2007 Annual Meeting, 
Seattle (Nov 3-7, 2007). 

4. Saripalle, M., Chinnam, R.B., Murat, A., and Guner, A., “Modeling Incidents for Dynamic 
Vehicle Routing Applications,” INFORMS 2007 Annual Meeting, Seattle (Nov 3-7, 2007). 

5. Murat, A., Chinnam, R.B., Guner, A., Saripalle, M., and Azadian, F., “Dynamic Routing 
under ATIS for Congestion Avoidance,” Research Issues in Freight Transportation -- 

Congestion and System Performance Conference, Seattle (Oct 22-23, 2007). 

Conference Sessions Organized: 

1. We are organizing a special session titled “Dynamic Routing and Logistics under Real-
Time ITS Information” at the INFORMS 2008 Annual Meeting in Washington D.C. (Oct 
12-15, 2008) under the Cluster: Real-time Systems. The session is Chaired by our Co-PI – 
Dr. Alper Murat. 

2. “Urban Transportation Planning Models: Dynamic Routing with Real-time ITS 
Information” at the INFORMS 2007 Annual Meeting in Seattle (Nov 3-7, 2007) under the 
Cluster: Transportation Science & Logistics. The session is Chaired by our Co-PI – Dr. 
Alper Murat. 

Conferences Attended: 

1. Drs. Chinnam and Murat attended the Michigan Intelligent Transportation Systems 

Conference, May 16-17, 2007. Dr. Khasnabis, Associate Dean for Research College of 
Engineering has presented on our project along with other WSU efforts related to 
transportation. 

2. Dr. Murat attended the Meeting Freight Data Challenges Conference, July 9–10, 2007 
Renaissance Chicago Hotel, Chicago. 

3. Dr. Murat attended the 2
nd

 Annual National Urban Freight Conference - December 5-7, 
2007 Long Beach, CA. 

Conferences Planning to Attend: 

1. INFORMS Annual Meeting- October 12-15, 2008 Washington, D.C. 

 

II.3 Journal Publications 

A manuscript has been dispatched to Computers & Operations Research journal that reports our 
SDP algorithms and their performance. A second manuscript based on the AO* algorithms is 
currently under preparation. 



 29 

III: REFERENCES 
 

1. A.P. Eiger, P.B. Mirchandani, H. Soroush, Path preferences and optimal paths in probabilistic 

networks, Transportation Science 19 (1985) 75–84 
2. D. P. Bertsekas, J. N. Tsitsiklis, An analysis of stochastic shortest path problems, Mathematics 

of Operations Research 16 (1991) 580-595 
3. R. Hall, The fastest path through a network with random time-dependent travel time. 

Transportation Science 20(3) (1986) 182-188 
4. L. Fu, L.R. Rilett, Expected shortest paths in dynamic and stochastic traffic networks, 

Transportation Research Part B 32 (1998) 499–516 
5. E.D. Miller-Hooks, H.S. Mahmassani, Least expected time paths in stochastic, time-varying 

transportation networks, Transportation Science 34 (2000) 198–215 
6. E.D. Miller-Hooks, H. S. Mahmassani, Path comparisons for a priori and time-adaptive 

decisions in stochastic, time-varying networks, European Journal of Operational Research 146 
(2003) 67–82 

7. J.L. Bander, C.C. White III, A heuristic search approach for a nonstationary shortest path 

problem with terminal costs, Transportation Science 36 (2002) 218–230 
8. H.N. Psaraftis, J.N. Tsitsiklis, Dynamic shortest paths in acyclic networks with Markovian arc 

costs, Operations Research 41 (1993) 91–101 
9. G. H. Polychronopoulos, J. N. Tsitsiklis, Stochastic shortest path problems with recourse, 

Networks 27(2) (1996)133–143 
10. A. Azaron, F. Kianfar, Dynamic shortest path in stochastic dynamic networks: Ship routing 

problem, European Journal of Operational Research 144 (2003) 138–156 
11. L. Fu, An adaptive routing algorithm for in vehicle route guidance systems with real-time 

information, Transportation Research Part B 35(8) (2001) 749–765 
12. S.T. Waller, A.K. Ziliaskopoulos, On the online shortest path problem with limited arc cost 

dependencies, Networks 40 (2002) 216–227 
13. S. Gao and I. Chabini, Optimal routing policy problems in stochastic time-dependent 

networks, Transportation Research Part B 40 (2006) 93-122 
14. S. Kim, M.E. Lewis, C.C. White III, Optimal vehicle routing with real-time traffic 

information, IEEE Transactions on Intelligent Transportation Systems 6 (2) (2005) 178–188 
15. S. Kim, M.E. Lewis, C.C. White III, State space reduction for non-stationary stochastic 

shortest path problems with real-time traffic congestion information, IEEE Transactions on 
Intelligent Transportation Systems 6(3) (2005) 273–284 

16. B.W. Thomas, C.C. White III, The dynamic shortest path problem with anticipation, European 
Journal of Operational Research 176 (2007) 836–854 

17. FHWA Report, Traffic Congestion and Reliability: Linking Solutions to Problems, prepared by 
Cambridge Systematics Inc. for the Federal Highway Administration Office of Operations, 
Washington, D.C., July 2004. 

18. D.P. Gaver, Highway Delays Resulting From Flow Stopping Conditions,  Journal of Applied 
probability 6 (1969) 137-153 

19. R.B. Noland, J.W. Polak, Travel Time Variability: A Review of Theoretical and Empirical 

Issues Transport Reviews 22(1) (2002) 39-54,  



 30 

20. J.A. Lindley, Urban freeway congestion: quantification of the problem and effectiveness of 

potential solutions, Institute of Transportation Engineers Journal 57(1) (1987) 27-32 

21. H. Cohen, F. Southworth, On the Measurement and Valuation of Travel Time Variability Due 

to Incidents on Freeways,  Journal Of Transportation And Statistics 2(2) (1999) 123-131 

22. T. Olmstead, Pitfall to avoid when estimating incident-induced delay by using deterministic 

queuing models, Transportation Research Record 1683 (1999) 38-46 

23. J. Henderson, L. Fu,  S. Li , Optimal CMS: A Decision Support System for Locating 

Changeable Message Signs, Transportation Engineering 2004, Beijing, China, (2004) 
24. H. Al-Deek, A. Garib, A. E. Radwan, New method for estimating freeway incident congestion, 

Transportation Research Record 1494, (1995) 30-39. 
25. G. Giuliano, Incident Characteristics, Frequency, and Duration on A High Volume Urban 

Freeway, Transportation Research 23 (1989) 387-36. 
26. H .Mongeot, J.B. Lesort , Analytical expressions of incident-induced flow dynamics 

perturbations, Transportation Research Record 1710 (2000) 58-68 

27. M. Baykal-Gürsoy, W. Xiao, K. Ozbay, Modeling traffic flow interrupted by incidents, 

European Journal of Operational Research, In Press, (2008) 
28. A. Garib, A.E. Radwan, H. Al-Deek, Estimating magnitude and duration of incident delays, 

Journal of Transportation Engineering 123 (6) (1997) 459–466  

29. C.E. Sigal, A.A.B. Pritsker, J.J. Solberg, The stochastic shortest route problem, Operations 
Research, 28, (1980)  1122-1129 

30. H. Frank,  Shortest paths in probabilistic graphs, Journal of Operational Research 17 (1969) 
583-599 

31. R.P. Loui, Optimal paths in graphs with stochastic or multidimensional weights, 
Communications of the ACM, 26(9) (1983) 670-676 

32. Mobility Monitoring Program, Texas Transportation Institute.  http://mobility.tamu.edu/mmp/ 
33. JJ. Verbeek, Vlassis N., Kröse B. Efficient Greedy Learning of Gaussian Mixture Models, 

Neural Computation 2003; 5(2): 469-485. 
34. Urban Mobility Report, Texas Transportation Institute, 2007. http://mobility.tamu.edu/ums/  

 


