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ABSTRACT 
 

We consider dynamic vehicle routing under milk-run tours with time windows in congested 

transportation networks for just-in-time (JIT) production. The arc travel times are considered 

stochastic and time-dependent. The problem integrates TSP with dynamic routing to find a static 

yet robust recurring tour of a given set of sites (i.e., DC and suppliers) while dynamically routing 

the vehicle between site visits. The static tour is motivated by the fact that tours cannot be 

changed on a regular basis (e.g., daily or even weekly) for milk-run pickup and delivery in 

routine JIT production. We allow network arcs to experience recurrent congestion, leading to 

stochastic and time-dependent travel times and requiring dynamic routing decisions. While the 

tour cannot be changed, we dynamically route the vehicle between pair of sites using real-time 

traffic information (e.g. speeds) from Intelligent Transportation System (ITS) sources to improve 

delivery performance. Traffic dynamics for individual arcs are modeled with congestion states 

and state transitions based on time-dependent Markov chains. Based on vehicle location, time of 

day, and current and projected network congestion states, we generate dynamic routing policies 

for every pair of sites using a stochastic dynamic programming formulation. The dynamic 

routing policies are then simulated to find travel time distributions for each pair of sites. These 

time-dependent stochastic travel time distributions are used to build the robust recurring tour 

using an efficient stochastic forward dynamic programming formulation. Results are very 

promising when the algorithms are tested in a simulated network of Southeast-Michigan 

freeways using historical traffic data from the Michigan ITS Center and Traffic.com. 
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1. EXECUTIVE SUMMARY 

In this research, we addressed the problem of planning milk-run tours for JIT production subject 

to hard time windows in congested road networks. We modeled the milk-run tours as a Traveling 

Salesman Problem (TSP) with hard time windows. The road network congestion is represented 

through random network arc travel times and time-dependent congestion states.  

 

The classical TSP is concerned with finding the least cost tour that visits each site exactly once 

given the set of sites. The travel between any pair of sites is a path which can be a fixed 

sequence of arcs or be determined through a dynamic policy. The cost of travel between pairs of 

sites can be measured in time, distance or a function of both, be deterministic or probabilistic, 

and be time-dependent or independent. We consider a TSP with hard time windows under 

stochastic time-dependent (STD) arc travel times. All preceding work assumes that the path 

travel cost between pairs of sites is either deterministic or stochastic with a known probability 

distribution. In our network setting, the path travel times are both stochastic and time-dependent. 

We modeled the recurrent congestion by defining congestion states of arcs based on historical 

ITS traffic data using Gaussian Mixture Model (GMM) based clustering. The changes in arc 

congestion states represent the traffic dynamics and are modeled as Markov processes. 

Accordingly, the optimal dynamic routing problem is then cast as a Markov decision process 

(MDP) where the states space consists of the position of the vehicle, the time of the day, and the 

current and projected congestion states of arcs with limited look ahead. We identified the paths’ 

optimal dynamic routing policies (DRP) by solving a stochastic dynamic programming 

formulation for each pair of sites. By simulating the optimal DRPs, we then estimated the travel 

time distributions between every pair of sites and used these distributions to determine the 

optimal TSP tour by solving a stochastic dynamic programming formulation for TSP. We 

obtained the optimal TSP tour as the most robust tour based on a mean-variance objective based 

on the trip time which accounts for the transportation cost and service level (i.e., on-time 

performance) trade-offs in JIT production systems.  

 

We evaluated the developed approach on a real case study application using the road network 

from Southeast Michigan. The case study corresponded to an automotive JIT production system 

where an OEM’s DC is replenished by milk-run pickup and deliveries from multiple suppliers. 

Accordingly, the study road network covered major freeways and highways in and around the 

Detroit metropolitan area. We compared the selected robust tours with those of the static routing 

policy between pair of sites and quantified the benefits of using dynamic policy. Without time 

windows for both static and dynamic policies, the case study implementation results showed that 

the dynamic policy saves 8.1% in trip duration on the average and reduces standard deviation of 

trip duration by 21.6% on the average. With the time windows set according to the expected site 

arrival times, we showed that the on-time delivery performance can be increased up to 8% for a 

site and up to 4% for a tour by using dynamic routing policy. In a subsequent experiment, we 

demonstrated the potential to further increase the on-time performance by setting the time 

windows of dynamic routing policy according to those of the static policy. Our case study results 

indicate that using dynamic routing policy between milk run visit not only decreases 

transportation cost (measured by trip time), but also increases the delivery service level 

performance (measured by on-time delivery). 
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2. ACTION PLAN FOR RESEARCH 

Milk-run deliveries are critical to some of the logistics companies and our partners. The routing 

algorithms based on point to point routing are not capable of supporting milk-run based 

deliveries with and without time-windows. Hence we executed the following steps to develop 

dynamic routing models and algorithms for milk runs. 

We approached the data collection from multiple directions. On the network structure (network 

topology, design parameters, arc characteristics) side, we developed a network represents 

freeway and highways of the South East-Michigan. We test our dynamic routing model on this 

network. For Southeast-Michigan corridor arc velocity data, we have collaborated with the 

MITS Center and Traffic.com. We received data representing several months of traffic flow 

(such as velocity, occupancy) for the southeast Michigan highways from them. We have 

analyzed this data to improve the quality of the models being developed for dynamic vehicle 

routing decision support when operating with access to Advanced Traveler Information Systems 

(ATIS) information. For instance, through our analyses, we identified the need for representing 

each arc’s congestion with a different number of states (and not force all arcs to be modeled with 

two states – i.e., congested and uncongested). Accordingly, we have refined the recurrent 

congestion state modeling by employing the Gaussian Mixture Model clustering method for 

automated detection of number of states and state velocity thresholds. Extensive evaluations of 

our dynamic routing algorithms on hypothetical networks revealed significant reductions in trip 

completion times in comparison with deterministic algorithms and static stochastic algorithms 

that do not account for recurring congestion information.  

We developed the procedure to select the best tour that visits every customer in the desired set 

and return to the depot in minimum expected time. We defined a robust tour objective to select 

the best tour. This robust tour objective captured the tradeoff between transportation efficiency 

and on-time delivery service level. We used a sequential method to select the robust tour. First, 

we determined the travel time distributions between every pair of sites. Second, we found and 

selected the tour minimizing the mean-variance objective of the trip time. The travel time 

distributions between sites were estimated through the following steps: (1) Develop a dynamic 

routing policy between every pair of sites. (2) Estimate the travel time distribution through 

simulation for every possible departure times. Once the travel time distributions were estimated 

for every pair of sites at different departure times, we then employed a stochastic time-dependent 

dynamic programming (STD-DP) to select the robust tour. We then tested our models and 

algorithms in a set of customer locations from the SE Michigan traffic network, compared the 

performance differences between typical base-line routing algorithms. 
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3. INTRODUCTION 

Just-in-time (JIT) production requires frequent small-batch pickups and deliveries subject to 

fixed time windows. Since the shipments are usually less than truck load, the freight carrier 

planners develop milk-run tours (e.g., a visiting sequence of pickup and delivery sites). In a 

milk-run tour, for example, the vehicle departs from a distribution center (DC), picks up goods 

from several supplier sites, and returns to the DC for delivery. In planning milk-run tours, 

managers also consider heijunka (production smoothing or workload leveling) and muda (waste) 

philosophies of JIT production. Whereas the former can be achieved by equally spacing the 

delivery time windows over the suppliers’ operating hours, the latter can be achieved by visiting 

the supplier sites at an optimal frequency, balancing transportation and inventory costs. The 

recurrent and non-recurrent congestion on road networks increase the travel time variability thus 

rendering it difficult to make delivery and pickup visits within the established time windows, 

which can be as narrow as 15 to 30 minutes (Chen et al. 2003, Groenevelt, 1993). For carriers, as 

congestion worsens the costs related to travel time (e.g. labor and overtime costs) may outweigh 

other operating costs ( e.g. vehicle miles traveled) (Figliozzi, 2010). 

 

For example, a survey in California found that 85% of trucking companies miss their time 

window schedules due to road network congestion. Furthermore, 78% of the managers surveyed 

stated that the time-window schedules for pickup and deliveries force their drivers to operate 

under congested road network conditions (Golob and Regan, 2003). Some industries allow early 

or tardy delivery and/or pickups with a penalty (soft time windows). However, there are many 

practical settings (e.g., JIT production) with hard time windows where vehicles may pickup or 

deliver only during fixed times without exception (Cordeau et al., 2000). 

 

The randomness of travel times on arcs may be because of several reasons. Recurrent and/or 

non-recurrent congestion are the two prime reasons hence we develop delay estimation models 

for both of these congestion types. We assume the traffic dynamics follows a Markov process. 

Namely, the state of the next time period depends on only the state of the previous time period. 

This allows us to model our problem based on Markov decision process (MDP). The state set of 

the MDP is based on the position of the vehicle, the time of the day and the (recurrent and non-

recurrent) congestion states of the arcs.   

 

We define recurrent (peak-time) congestion states based on the average speed of the vehicles, 

time of the day, and a cut-off speed. The congestion state classes (i.e.: congested, uncongested, 

etc.) of the roads are determined with historic traffic data from ITS center based on Gaussian 

Mixture Model (GMM). Since, not all of the network information affects an optimal decision, we 

assume the arc set of a state such that only the arcs those are close the vehicle affects the 

decision. We also assume that the traffic data for some of the arcs may not be available. 

The contribution of this study is three-fold. First, we developed an integrated methodology for 

identifying the TSP tours of sites in STD networks where the stochastic path travel times 

between pairs of pickup and delivery sites are estimated through optimal dynamic routing. 

Second, we proposed an approach for dynamic routing between pairs of sites in STD networks 

using the real-time congestion information available from ITS sensor networks. Third, using a 

real network and data, we simulated the results of the proposed integrated approach and 

demonstrate the transportation cost and delivery service level improvement based on optimal 

dynamic routing between sites. 
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4. OBJECTIVE 

The objective of our study is to develop methods for routing vehicles in stochastic road network 

environments representative of real-world conditions. 

 

In the literature some aspects of this problem have been studied at some level but there does not 

exist any study that takes into account all aspects of our dynamic routing problem. To the best of 

our knowledge, there is no earlier study on the dynamic routing for the stochastic time-dependent 

TSP problem. The objectives of this study are: (1) Developing an integrated methodology for 

identifying the TSP tours of sites in STD networks. (2) Finding dynamic routing policies 

between pairs of sites in STD networks that use real-time congestion information.  

 
5. SCOPE 

Given an origin and customer set, the traveling salesman problem is to decide which arc to 

choose at each decision node (customer locations and/or intersections) such that the expected 

total travel time (or another performance criteria) is minimized while visiting all customers in 

their specified delivery time windows.  

 

Our most general model is a non-stationary stochastic time dependent traveling salesman 

problem with time windows (STD-TSP-TW). The Traveling Salesman Problem (TSP) [2] is 

concerned with finding optimal trip (e.g. with the least travel time, distance, or  other 

performance measure) in which the vehicle starts from the depot, visits every customer in a given 

set, and returns to the depot. If the travel time between two customers or between a customer and 

the depot depends on not only the distance/travel time between the customers, but also the time 

of day of departure then it is called time-dependent TSP (TD-TSP). The service time at each 

customer may also depend on the time of day. If the travel times and/or service times are also 

random values then this lead to another variant of TSP namely, stochastic TD-TSP (STD-TSP). 

Finally, each of the customers may also have imposed time window constraints on delivery time. 

In literature this is called STD-TSP with time windows (STD-TSP-TW). Hence, in the STD-TSP-

TW, a vehicle is initially located at the depot, and must serve a number of geographically 

dispersed customers in a network where travel times are stochastic and time dependent and each 

customer must be served within a specified time window. The objective is to find the optimum 

route with minimum total cost of travel and service time. 

 
6. LITERATURE SURVEY 

In JIT production systems, the pickup and delivery tours are constructed while accounting for 

logistics drivers such as leveling the workload and decreasing inventory levels. One approach for 

determining pickup and delivery tours in JIT systems is the common frequency routing (CFR) 

method, where the suppliers are grouped into subsets and each subset of suppliers is served in a 

single tour (Chuah and Yingling, 2005). The CFR method considers scheduling and routing 

decisions jointly while accounting for transportation and inventory costs. For computational 

tractability, the CFR method assumes fixed routes and identical visit frequency for suppliers in 

the same subset. Another approach is the generalized frequency routing (GFR) where a supplier's 

visit frequency is not required to be the same as other suppliers in the subset (Ohlmann et al., 

2010).  
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One of the goals in scheduling and routing decisions is to achieve production smoothing through 

uniformly spaced pickup and delivery visits. These “lean” routing studies consider a more 

general problem (e.g., VRP) than the TSP studied in this paper but assume that the travel times 

on the transportation network are deterministic and time-independent. Accordingly, our focus 

was on selecting robust tours for a given subset of suppliers with uniformly spaced hard time 

windows. 

 

The body of literature to which this study is related is the stochastic time-dependent traveling 

salesman problem (TSP) with time windows. In the classical TSP, given a set of sites and the 

cost matrix relating pairs of sites, the goal was to find the shortest tour starting from the origin 

site, visiting each site exactly once, and returning to the origin site. TSP and its generalization 

VRP have been studied for more than five decades and a wide variety of exact and heuristic 

algorithms have been developed (Johnson and McGeoch 1997, Junger et al. 1995, Laporte 2009, 

Laporte 2010). There are many variants of the classical TSP but we restricted our review to those 

studies with time-dependent and stochastic travel times. Malandraki and Dial (1996) presented a 

dynamic programming (DP) procedure and a “restricted” DP procedure that uses the nearest-

neighbor heuristic approach to solve the time-dependent TSP (TD-TSP). They modeled the time 

dependency by discrete step functions such that the planning horizon had a number of different 

time zones and the travel times differed only at different time zones. Ichoua et al. (2003) 

recognized the limitation of using such step functions which violates the first-in-first-out (FIFO) 

principle by causing a later departure time leading to an earlier arrival time if steep speed 

increases occur. Accordingly, they emphasized the need to explicitly model time-dependent 

travel times and proposed a model to determine TSP tours in compliance with the FIFO 

principle. 

 

Another variant of the classical TSP is the TSP with stochastic travel times between sites. This 

variant is most studied in the more general form of the vehicle routing problem (Laporte et al. 

1992, Lambert et al. 1993). Jula et al. (2006) and Chang et al. (2010) studied the stochastic time-

dependent TSP with time windows (STD-TSP-TW). Jula et al. (2006) solved the TSP through a 

dynamic programming approach applied to a reduced state space. They employed two-state 

space reduction strategies to reduce the computational complexity. Initially they estimated the 

mean and variance of the arrival time of the vehicle at each site based on the first (or second) 

order Taylor approximation. In the first strategy, they defined a service level based on the arrival 

times to sites and eliminated routes that did not satisfy those service levels. The other strategy 

eliminates states based on expected travel times. Chang et al. (2010) developed a convolution–

propagation approach (CPA) to estimate the mean and variance of arrival times at sites assuming 

the arc travel times are normally distributed. They proposed a heuristic algorithm that uses the n-

path relaxation of deterministic TSP in Houck et al., (1980) to solve the problem. Although the 

TSP problem we considered is similar to those in Jula et al. (2006) and Chang et al. (2010), the 

travel time distributions between pairs of sites were endogenous in our study. In particular, we 

integrated the construction of a TSP tour among sites with the road network routing between 

pairs of sites in the TSP tour. The dynamic routing between sites accounts for the time-dependent 

stochastic congestion states by using real-time traffic information and by anticipating congestion 

states with limited look ahead. To the best of our knowledge, there is no prior study proposing 

and integrating dynamic routing between sites for the stochastic time-dependent TSP problem.  



6 

 

In addition, whereas Jula et al. (2006) and Chang et al. (2010) identified tour(s) with least 

expected tour times, we selected tour(s) with minimum mean-variance objective of the trip times.  

Dynamic routing and modeling real time information has mostly been studied in shortest path 

problem literature. Polychronopoulos and Tsitsiklis (1993) conducted the first study to consider 

the stochastic temporal dependence of arc costs and suggested using online information en route. 

They defined the environmental state of nodes that is learned only when the vehicle arrives at the 

source node. They considered the state changes according to a Markovian process and employed 

a dynamic programming procedure to determine the optimal DRP. Kim et al. (2005a) studied a 

similar problem as did Psaraftis and Tsitsiklis (1993) except that the information of all of the arcs 

was available in real-time. They proposed a dynamic programming (DP) formulation where the 

state space included the states of all arcs, time, and the current node. They noted that the state 

space of the proposed formulation became quite large making the problem intractable. They 

reported substantial cost savings in a computational study based on a Southeast-Michigan road 

network. To address the intractable state-space issue, Kim et al. (2005b) proposed state space 

reduction methods. A limitation of Kim et al. (2005a) is the modeling and partitioning of travel 

speeds for the determination of arc congestion states. They assumed that the joint distribution of 

velocities from any two consecutive periods followed a single unimodal Gaussian distribution, 

which did not adequately represent arc travel velocities for arcs that routinely experience 

multiple congestion states. Moreover, they also employed a fixed velocity threshold (50 mph) for 

all arcs and for all times in partitioning the Gaussian distribution to estimate state-transition 

probabilities (i.e., transitions between congested and uncongested states). As a result, the value 

of real-time information was compromised rendering the loss of performance of the DRP. Our 

dynamic routing approach addressed all of these limitations. The detailed steps of our model are 

described in the Section 3.1.  

 
7. METHODOLOGY: STD-TSP WITH DYNAMIC ROUTING 

The STD-TSP with dynamic routing problem is to find a tour of a given set of sites (i.e., DC and 

supplier) while dynamically routing between sites’ visits on a STD network to meet the time 

windows requirements. It differs from the TSP with stochastic travel times in that the travel time 

distributions are obtained through dynamic routing on the road network and thus are dependent 

on the site departure times. We selected the tours based on a robust tour objective. This robust 

tour objective captured the tradeoff between transportation efficiency and on-time delivery 

service level.  

We used a sequential method to select the robust tour. First, we first determined the travel time 

distributions between every pair of sites. Second, we found and selected the tour minimizing the 

mean-variance objective of the trip time. The travel time distributions between sites were 

estimated through the following steps (See Section 3.1.): 

• Develop a dynamic routing policy between every pair of sites.  

• Estimate the travel time distribution through simulation for every possible departure times. 

Once the travel time distributions were estimated for every pair of sites at different departure 

times, we then employed a stochastic time-dependent dynamic programming (STD-DP) to select 

the robust tour (Section 3.2.).  
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7.1. Dynamic Routing with Real-time Traffic Information  

Let ( ),G N A=  be a directed graph in which N  is the set of nodes and A N N⊆ ×  is the set of 

directed arcs. The (decision) node n N∈ represents an intersection where the driver can decide 

which arc to select next. A directed arc is represented by an ordered pair of nodes ( ), 'n n A∈
 
in 

which n  is called the origin and 'n  is called the destination of the arc. Given an origin-

destination (OD) node pair of sites (DC, supplier), the dynamic routing problem is to decide 

which arc to choose at each decision node such that the expected total OD travel time is 

minimized. We denote the origin and destination nodes with 0n  and dn , respectively. We 

formulate this problem as a finite horizon Markov decision process (MDP), where the travel time 

on each arc follows a non-stationary stochastic process. We first describe the modeling of 

recurrent congestion and then present the stochastic dynamic programming formulation and 

solution approach. 

 
7.1.1. Congestion Modeling 

A directed arc ( ), 'n n A∈  is labeled as observed if its real-time traffic data (e.g., velocity) is 

available through the ITS. An observed arc can be in 1r ++ ∈ Ζ  different states that represent the 

arc’s traffic congestion level at a given time. Let ( )as t  be the congestion state of arc a  at time 

period t , i.e.
 

( ) { } { }Congested at level as t i i= =  for 1,2,..., 1 i r= +  and be determined as follows: 

( ) ( ) ( ) ( ){ }1,if i i
a a a as t i c t v t c t

−= ≤ <  (1)  

where ( )i
ac t

 
denote the cut-off velocity at level i. For instance, if there are two congestion levels 

(e.g., 1 2r + = ), then the states will be i.e., ( ) { } { }Uncongested 0as t = =  and ( ) { } { }Congested 1as t = =

.  

We assume that the state of an arc evolves according to a non-stationary Markov chain. In a 

network with all arcs observed, ( )S t
 
denotes the traffic congestion state vector for the entire 

network, i.e., ( ) ( ) ( ) ( ){ }1 2 | |, ,..., AS t s t s t s t=  at time t . For presentation clarity, we will suppress ( t ) 

in the notation whenever time reference is obvious from the expression. Let the state realization 

of ( )S t  be denoted by ( )s t . We assume that arc states are independent from each other and have 

the single-stage Markovian property. To estimate the state transitions for each arc, we jointly 

model the velocities of two consecutive periods Accordingly, the time-dependent single-period 

state transition probability from state ( )as t i=
 

to state ( )1as t j+ =  is denoted by 

( ) ( ){ }1 | ( )ij
a a aP s t j s t i tα+ = = = . We estimate the transition probability for arc a,

 
( )

ij
a tα  from the 

joint velocity distribution as follows: 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1

< 1 1 1

<

i i j j
a a a a a aij

a i i
a a a

c t V t c t c t V t c t
t

c t V t c t
α

− −

−

≤ ∩ + < + < +
=

≤
 (2)  

where the |e| operator corresponds to the frequency count of event e. Let ( ), 1aTP t t +  denote the 

matrix of state transition probabilities from time t  to time 1t + , then, we have 

( ) ( ), 1 ij
a a

ij
TP t t tα + =  

. Note that the single-stage Markovian assumption is not restrictive in our 
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approach as we could extend our methods to the multi-stage case by expanding the state space 

(Bertsekas, 2001). Let the network be in state ( )S t
 
at time t , and we want to find the probability 

of the network state ( )S t δ+ , where δ  is a positive integer number. Given the independence 

assumption of the arcs’ congestion states, this can be formulated as follows: 

( ) ( )( ) ( )
1

| ( ) | ( )

A

a a

a

P S t S t P s t s tδ δ
=

+ = +∏  (3)  

Then the congestion state transition probability matrix for each arc in δ  periods can be found by 

the Kolmogorov’s equation:
 

( ) ( ) ( ) ( ), 1 ...ij ij ij
a a a a

ij ij ij
TP t t t t tδ α α α δ     + = × + × × +     

 (4)  

We assume that the distribution of an arc travel time is Gaussian. We further assume that the arc 

travel time depends on the congestion state of the arc at the time of departure (equivalent to the 

arrival time whenever there is no waiting). It can be determined according to the corresponding 

normal distribution: 

( ) ( ) ( )( )2, , ~ , , , , ,a a at a s N t a s t a sδ µ σ  (5)  

where ( ), , at a sδ
 

is the travel time; ( ), , at a sµ and ( ), , at a sσ are the mean and the standard 

deviation of the travel time on arc a at time t with congestion state ( )as t . For clarity of notation, 

we hereafter suppress the arc label from the parameter space wherever it is obvious, i.e. 

( ), ,
a

t a sδ
 
will be referred as ( ),

a
t sδ . 

7.1.2. DP Formulation for Dynamic Routing    

The objective of the dynamic routing algorithm is to minimize the expected travel time based on 

real-time information such as the path originates at node 0n
 
and ends at node dn . Let us assume 

that there is a feasible path between ( )0 , dn n  where a path ( )0 1,.., ,..,k Kp n n n −=
 
is defined as the 

sequence of (decision) nodes such that 1( , )k k ka n n A+≡ ∈ , 0,.., 1k K= −  and K  is the number of 

nodes on the path.  

 

We define set ( )1,k k ka n n A+≡ ∈  as the current arcs set of node kn , denoted with ( )kCrAS n . That 

is, ( ) ( ){ }1: ,k k k k kCrAS n a a n n A+≡ ≡ ∈  is the set of arcs emanating from node kn . Each node on a 

path is a decision stage (or epoch) at which a routing decision (which node to select next) is to be 

made. Let kn N∈
 
be the location of k

th
 decision stage, kt is the time at k

th
 decision stage where 

{ }1,...,kt T∈  1KT t −> . T  is an arbitrarily large number and is used to limit the planning horizon 

for modeling purposes. Note that we are discretizing the planning horizon.  

 

While the optimal dynamic routing policy requires real-time consideration and projection of the 

traffic states of the complete network, this approach renders the state space prohibitively large. In 

fact, there is little value in projecting the congestion states well ahead of the current location. 

This is because the projected information is not different from the long run average steady state 

probabilities of the arc congestion states.  
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Hence, an efficient but practical approach would trade off the degree of look-ahead (e.g., the 

number of arcs to monitor) with the resulting projection accuracy and routing performance. This 

has been very well illustrated in Kim et al. (2005b). Thus, we limit our look-ahead to a finite 

number of arcs that can vary by the vehicle location on the network. The selection of the arcs to 

monitor would depend on factors such as arc lengths, the value of real-time information, and the 

congestion state transition characteristics of the arcs. For ease of presentation and without loss of 

generality, we choose to monitor only two arcs ahead of the vehicle location and model the rest 

of the arcs’ congestion states through their steady state probabilities. Accordingly, we define the 

following two sets for all of the arcs in the network. ( )kScAS a , the successor arc set of arcs ka ,
 

( ) { }1 1 1 2: ( , )k k k k kScAS a a a n n A+ + + +≡ ≡ ∈  , i.e., the set of outgoing arcs from the destination node (

1kn + ) of arc ka . ( )kPScAS a , the post-successor arc set of arc ka , 

( ) { }2 2 2 3: ( , )k k k k kPScAS a a a n n A+ + + +≡ ≡ ∈  i.e., the set of outgoing arcs from the destination nodes 

( 2kn + ) of arcs 1ka + . 

 

Since the total path travel time is an additive function of the individual arc travel times on the 

path plus a penalty function measuring earliness/tardiness of arrival time to the destination node, 

the dynamic route selection problem can be modeled as a dynamic programming model. The 

state ( )
1 2 ,, ,

k kk k ka an t s
+ +∪ of the system at the k

th
 decision stage is denoted by kΩ . This state vector 

is composed of the state of the vehicle and network and thus is characterized by the current node 

( kn ), the current node arrival time ( kt ), and 
1 2 ,k k ka as

+ +∪  , the congestion state of arcs 1 2k ka a+ +∪
 

where ( ){ }1 1: kk ka a ScAS a+ + ∈
 
and ( ){ }2 2: kk ka a PScAS a+ + ∈  at k

th
 decision stage.  

 

The action space for the state kΩ  is the set of current arcs of node kn , ( )kCrAS n . At every 

decision stage, the trip planner evaluates the alternative arcs based on the remaining expected 

travel time. The expected travel time at a given node with the selection of an outgoing arc is the 

summation of expected arc travel time on the arc chosen and the expected travel time of the next 

node. Let { }
0 0 1 1, ,...,

dn n Kπ π π −=π
 

be the dynamic routing policy (DRP) of the trip that is 

composed of policies for each of the K-1 decision stages. For a given state 

( )
1 2 ,, ,

k kk k k ka an t s
+ +∪Ω = , the policy ( )k kπ Ω  is a deterministic Markov policy which chooses the 

outgoing arc from node kn , i.e., ( ) ( )k k ka CrAS nπ Ω = ∈ . Therefore, the expected travel cost for a 

given policy vector π  is as follows: 

( ) ( )( ) ( )
2

0 1

0

, ,
k

K

k k k k K

k

F E g gπ

δ
π δ

−

−
=

  
Ω = Ω Ω + Ω 

  
∑  (6)  

where ( )0 0 0 0, ,n t SΩ =  is the starting state of the system. kδ
 
is the random travel time at decision 

stage k, i.e., ( ) ( )( ), ,k k k k a kt s tδ δ π≡ Ω . ( )( , , )k k k kg π δΩ Ω
 

is cost of travel on arc 

( ) ( )k k ka CrAS nπ Ω = ∈  at stage k , i.e., if travel cost is a function (φ ) of the travel time, then 

( ) ( )( , , )k k k k kg π δ φ δΩ Ω ≡ and ( )1Kg −Ω is terminal cost of earliness/tardiness of arrival time to the 
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destination node under state 1K −Ω . Then, the minimum expected travel time can be found by 

minimizing ( )0F Ω  over the policy vector π as follows: 

( )
{ }

( )
0 1 10

*
0 0

, ,...,
min

n n Kd

F F
π π π −=

Ω = Ω
π

 (7)  

The corresponding optimal policy is then: 

{ }
( )

0

0 1 10

*
0

, ,...,

arg min
d

n n Kd

n n F
π π π −=

= Ω
π

π  
(8)  

 

Hence, the Bellman’s cost-to-go equation for the dynamic programming model can be expressed 

as follows (Bertsekas, 2001): 

( ) ( ) ( ){ }* *
1min ( , , )

k k

k k k k k kF E g F
π δ

π δ +Ω = Ω Ω + Ω  (9)  

For a given policy ( )k kπ Ω , we can re-express the cost-to-go function by writing the expectation 

in the following explicit form: 

( ) ( ) ( )

( ) ( )( ) ( )( ) ( )
, 1 , 11 2

1 1 21 1 11 1, , ,

| | , , ,

|

k

a k a kk k

k k k

k k k k k k k k

k k k k

s s

k k ka a a

F a P a g a

P s t s t P s t F

δ

δ δ

+ ++ +

+ + ++ + ++ +

Ω = Ω Ω

+ Ω 

∑

∑ ∑
 (10) 

where ( )| ,k k kP aδ Ω  is the probability of travelling arc ka  in kδ
 
periods. ( )( )

2 11,k kkaP s t
+ ++  is the 

long run probability of arc ( )2 2: kk ka a PScAS a+ + ∈  being in state 
2 1,k kas

+ +  
in stage 1k + . This 

probability can be calculated from the historical frequency of a state for a given arc and time. 

 
 

We used the backward dynamic programming algorithm to solve ( )*
kF Ω , 1, 2,..,0k K K= − − . In 

the backward induction, we initialize the final decision epoch such that, ( )1 1 1 1, ,K K K Kn t s− − − −Ω = , 

1Kn −  is the destination node, and ( )1 0KF −Ω =
 
if 1Kt T− ≤ . Accordingly, a penalty cost is accrued 

whenever there is delivery tardiness, e.g., 1Kt T− > . Note that 1Ks − = ∅ , since the destination node 

does not have any current and successor arc states, e.g. the travel terminates at the destination 

node. 

7.1.3. Estimating Travel Time Distributions between Sites 

Given a pair of sites (DC, supplier), origin j M∈ and destination k M∈ , we solve the dynamic 

programming formulation in preceding section for all feasible departure times from j and obtain 

the optimal routing policy, jkπ , for each departure time alternative. Next, for each departure time 

alternative ( jt ), we sample a congestion state ( )js t  for current and successor arcs of j, and 

simulate the policy corresponding to the sample state ( ), , ( )j jj t s tΩ = . Note that the sampling 

probabilities of the congestion state ( )js t  are based on the steady-state probabilities of the states 

of current and successor arcs of j. Following sufficient sampling for jt , we estimate the 
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distribution of the mean travel times obtained by simulating corresponding policies for each 

sampled state Ω . We then calculate the expectation and variance of travel time from j to k at 

time jt  and respectively denote them with ( )jk jE tδ 
   and ( )( )jk jVar tδ . Note that, with slight 

abuse of notation, ( )jk jtδ corresponds to the random travel time between j and k departing at jt .  

7.2. Dynamic Programming for STD-TSP 

In this section, we describe the stochastic time-dependent dynamic programming (STD-DP) 

approach for selecting a robust tour of a given set of sites (i.e., DC and supplier) while 

dynamically routing between sites’ visits to meet the time windows requirements. The time 

window requirements are strict (e.g., hard time windows) and each site has a deterministic 

service time for loading/unloading. This STD-DP approach integrates and builds on the results of 

earlier studies. Specifically it integrates the stochastic tour search procedure from Malandraki 

and Dial (1996) and Jula et al. (2006) and the convolution idea from Chang et al. (2010). 

However, the proposed STD-DP approach uses the travel time distributions obtained in the 

preceding section by dynamically routing on the road network. Further, the approach selects the 

most robust tour by trading off the expected duration of the tour with its variability as follows: 

( ) ( )( )00 , ,0 , ,0 ,TC E T M b Var T Mτ τ= +    (11) 
 

where, τ  is the TSP tour, ( ), ,0E T M τ    and ( )( ), ,0Var T M τ  are the expected and variance of the 

round trip duration departing from site 0 (DC) at time 0t , visiting all sites in M  once, and 

returning back to site 0 (DC); b is a user defined risk-parameter for balancing the transportation 

efficiency with on-time delivery performance.  

 

We first describe the STD-DP approach without the time-windows and present its extension to 

time window case in Section 3.2.1.
 
There are m-1 sites (other than the DC, assuming the vehicle 

at the DC) to be visited, represented by nodes 1,..., 1m M− ∈ . Let ( ), / {0}C k M⊆
 
be an unordered 

set of visited sites where k C∈  is the last visited site. Define partial tour τ  as a tour that starts 

from the DC, visits all sites in ( ),C k  only once and ends the tour at site k . Note that there may 

be more than one partial tour corresponding to set ( ),C k  and we denote the set of partial tours 

with ( ),C kτ ∈ Γ . For brevity, we do not repeat the membership of partial tours in the remainder 

and assume ( ), ,C kτ  implies ( ),C kτ ∈ Γ . Let ( ), ,T C kτ be the random variable of arrival time at 

site k taking the partial tour τ  of set ( ),C k
 

after departing site 0 at time 0t . Let also

( ), ,E T C kτ   and ( )( ), ,Var T C kτ  be the mean and variance of arrival time to site k, ( ),T C k  after 

taking the partial tour τ , respectively.  

 

 

 

 

Step 1. Initialize: For all ( ), 1C k =  where ( ), { }, / {0}C k k k M= ∈ , we initialize
 

( ) ( )0 0 0, , (0) kE T C k T s E tτ δ= + +        and ( )( ) ( )( )0 0, , kVar T C k Var tτ δ= , where (0)T is the arrival 
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time to the site 0 (DC), 0s
 
is the service (e.g., loading/unloading) time at the site 0, and 

( )0 0kE tδ   is the expected travel time from site 0  to site k  as a function of the departure time,
 

0t . Note that the expectation ( )0 0kE tδ    is over the congestion states of current and successor 

arcs of site 0. 

 

Step 2. Main: For all ( ), 1C k > , there are partial tours of set ( ),C k , where we visit k , 

/ {0, }k M j∈  immediately after j { }( )for all /j C k∈ . The mean and variance ( ), ,T C kτ  for the 

partial tour τ  is calculated through the following convolution propagation approach adapted 

from Chang et al. (2010): 

( ) ( ) ( ), , , , ,
j

j

j jk j t

t

E T C k E T C j s E t pτ τ δ = + +        ∑  
(12) 

( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )1

2

2
2, , , ,

2 , , ,

j j j j

j j j

t tj j

j

t t t jk j t jk j

t t t

jk j z z

t

Var T C k Var T C j p p E t p E t

E t Var T C j

τ τ σ δ δ

δ τ ϕ ϕ
−

 
    = + + −     

 − − 

∑ ∑ ∑

∑

 (13) 

where js  is the deterministic service time at site j ; ( )jk jtδ  is the travel time from site j  to site 

k  at the departure time ( ), ,j jt T C j sτ= + ; 
jtp is the probability of departing at time jt  from node 

j . Note that the expectation ( )jk jE tδ 
   is over the congestion states of current and successor 

arcs of site j. Let 
( )

( )( )

, ,

, ,

j j

j

t E T C j s

t
Var T C j

z
τ

τ

− −  = ,  we calculate 
jtp
 
as ( ) ( )1j j jt t tp z z −= Φ − Φ , where ( )ϕ ⋅  and 

( )Φ ⋅  are the density and cumulative distribution functions of the standard normal distribution, 

respectively. Once ( ), ,T C kτ
 
is calculated for all ( ), 1C k > , we decrease the number of partial 

tours under investigation by performing the following partial tour elimination test adapted from 

Jula et al. (2006). 

 

Dominancy test: There may be more than one partial tour for a set ( ),C k . Let us assume 

( )1, ,C kτ  and ( )2, ,C kτ  are two partial tours of set ( ),C k  that cover same sites. We eliminate the 

partial tour ( )1, ,C kτ  if ( )2, ,T C kτ  dominates ( )1, ,T C kτ ,  e.g., ( ) ( )2 1, , , ,E T C k E T C kτ τ≤        

and ( )( ) ( )( )2 1, , , ,Var T C k Var T C kτ τ≤ . 

 

We note that additional partial tour elimination tests based on time windows are described in the 

next section. After testing all pairs of partial tours, we repeat the main step until {0}C M= − . 

 

 

Step 3. Termination: To complete the tour at the site 0 (DC), we set k=0 and perform the main 

step one last time and obtain the expectation and variance of the total tour time
 ( ), ,0T C τ for all 

remaining tours τ  of ( ),0C  where C=M. We calculate the total tour cost as 
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( ) ( )( )00 , ,0 , ,0TC E T C b Var T Cτ τ= +    for each of the remaining tours. We select the tour with 

minimum cost as the robust tour solution.  

 

 
7.2.1. STD-TSP with Time Windows 

In the preceding section, we presented STD-DP for solving the STD-TSP without time windows. 

This section extends it to cases with hard time windows. When there is a time window 

requirement at a site, there are three possible arrival scenarios to that site with regard to the time 

window: early, late, and on-time arrival. In our model, we allow early arrivals, if earliness is not 

greater than a pre-specified value, by requiring the vehicle to wait until the beginning of time 

window. In comparison, we do not allow late arrivals by eliminating those partial tours with the 

possibility of tardiness greater than a pre-specified probability. 

Let us assume the vehicle arrives at site j  with a random arrival time of ( ), ,T C jτ   with partial 

tour τ  and does not violate any time window requirement. Let ( ),j je l
 
be the time window at site 

j , where je  is the earliest time and jl is the latest time to start service at site j .  

• Early Arrival: The vehicle arrival is assumed to be early if probability of arriving later than je is 

less than the early arrival probability γ : ( )( ), , jP T C j eτ γ≥ ≤ . The vehicle can wait only if 

( ) ( ), , jT C j eτ ε≥ − , where ε  is maximum allowable waiting time at the site; otherwise the 

vehicle is assumed to be too early and the partial tour is then discarded. Note that if a particular 

vehicle arrival is accepted, then, the start time to service is ( )( )max , , , jT C j eτ . 

• Late Arrival: The vehicle arrival is assumed to be late and the partial tour is discarded if 

probability of arriving later than jl is greater than the maximum allowable tardiness probability γ

: ( )( ), , jP T C j lτ γ≥ > . 

• On-time Arrival: The vehicle arrival is assumed to be on-time and is accepted if both 

( )( ), , jP T C j eτ γ≥ >  and ( )( ), , jP T C j lτ γ≥ ≤ . 

Given these definitions, ( ), ,E T C jτ    and ( )( ), ,Var T C jτ  in equation (12) and (13) can be 

calculated with the following formulas: 

( ) ( )( ), , max , , , j jE T C j E T C j e sτ τ = +      (14) 

( )( ) ( )( ) ( )( )
2 2, , max , , , max , , ,j jVar T C j E T C j e E T C j eτ τ τ   = −    

 (15) 

Note that the maximization operator is due to the waiting upon early arrival. For late arrivals, the 

maximum operator in (14) and (15) does not exist since there is no waiting with late arrivals. In 

both early and late arrival cases, we eliminate those partial tours according to the corresponding 

pre-defined parameters ( γ ,ε , γ ).  

Note that, different than the stochastic dominance elimination, time window eliminations are 

used in the initialization step and at the termination step if there are also DC time windows 

applicable to the tour completion time. 
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7.2.1.1. Determining Time Windows for a Given Tour 

In the preceding section, we described how the STD-DP approach is extended for problems with 

hard-time windows. In most JIT production systems, the time window requirements affect 

different parties differently. For instance, the carriers are penalized for late deliveries either by 

charges associated with contracted service levels or by their reduced ranking as a transportation 

service supplier. In comparison, early arrivals correspond to lower utilization of assets and 

drivers. The suppliers (pickup sites), on the other hand, need to stock more safety inventory and 

allocate more material handling resources if time windows are relaxed (e.g., width of the window 

is increased). The width of the time windows and their positioning constitute two features of 

most logistics contracts and are often re-adjusted due to changing production volumes and 

routes. The time window setting process differs from industry to industry. In JIT environments, it 

is common that the time windows are set by trucking and/or manufacturer companies according 

to JIT principles and are usually accepted by the suppliers as part of the sourcing contract. In 

such a setting, the trucks visit the supplier sites several times per day subject to the tight time 

windows spaced as much evenly as possible within the supplier's operating hours (even spacing 

is generally key to supplier efficiency; reduces finished goods inventory levels).  

 

We now describe a procedure for carriers to position the time windows such that the on-time 

delivery performance is improved. We assume that the width of time windows ( w) is determined 

beforehand by the supplier and manufacturer and they are indifferent to the positioning of the 

time windows as long as they are uniformly distributed during delivery horizon. The procedure 

uses the result that the site arrival times follow Gaussian distribution when the arc travel times 

are also Gaussian (Chang et al., 2010). Therefore, centering the time windows at the expected 

site arrival times maximizes the on-time delivery performance, if, there is no waiting allowed at 

the site for early deliveries. This is indeed the case practiced by carriers even if there is some 

flexibility in early arrival acceptance. Let τ  be the selected ordered tour that starts from DC, 

visits all sites once, and ends at DC. Further let kτ  be the partial tour of τ  ending at site k. 

Accordingly, ( ), ,kT C kτ is the random variable of arrival time at site k  by following the partial 

tour kτ . Let also ( ), ,kE T C kτ    
and ( )( ), ,kVar T C kτ

 
be the mean and variance of arrival time

( ), ,kT C kτ , respectively.  

 

Procedure for Setting Time Windows: 

For 1,..., 1k m= − , Repeat: 

• If k=1, 

( ) ( )0 0 0, , (0)k kE T C k T s tτ δ= + +    and ( )( ) ( )( )0 0, ,k kVar T C k Var tτ δ= where (0)T is the 

arrival time to the site 0 (DC), 0s
 
is the service time at the site 0, and ( )0 0k tδ is the 

random travel time from site 0  to site k  as a function of the departure time,
 0t . 

 Else, 

Assume visiting k  immediately after j  and look up the updated ( ), ,jE T C jτ 
 

 from 

the previous step. Calculate ( ), ,kE T C kτ    from (11). 

 End. 

• Set  ( ), ,
2k k

we E T C kτ= −    and ( ), ,
2k k

wl E T C kτ= +   . 
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• Update ( ), ,kE T C kτ    
 and ( )( ), ,kVar T C kτ

 
according to equations (14) and (15). 

     Return. 

 

The above procedure is an iterative procedure where we visit sites according to the tour τ  and 

set time windows for each site one at a time. At each site, we calculate the expected arrival time 

to that site based on the time windows set at the previously visited sites. We account for the 

previously set time windows because they affect the site arrival time of the subsequent visited 

sites through the waiting at early arrivals. Note that the centered placement of time windows is 

an assumption. It is possible to shift the time windows to the right of the center (expected site 

arrival time) such that the likelihood of late arrivals decreases. Clearly, this modification is 

contingent upon the maximum allowable waiting time imposed for early arrivals. In the case of 

unrestricted waiting, it can be shown that, by shifting the time window to right, one can turn time 

window constraints into redundant constraints. 

8. DISCUSSION OF RESULTS: EXPERIMENTAL STUDY  

In this section, we test the proposed methodology on a real case study application using the road 

network from Southeast Michigan, U.S.A. (Fig. 1). We consider an automotive JIT production 

system where an OEM’s DC is replenished by milk-run pickup and deliveries from multiple 

suppliers. The case study road network covers major freeways and highways in and around the 

Detroit metropolitan area. The network has 140 nodes and a total of 492 arcs with 140 observed 

arcs and 352 unobserved arcs. Real-time traffic data for the observed arcs is collected by the 

Michigan ITS Center and Traffic.com. In this application, we used data from 66 weekdays of 

May, June, and July 2009, for the full 24 hours of each day. The raw speed data was aggregated 

at a resolution of 5 minute intervals. For the experimentation, we increased the resolution of data 

to one data-point per minute through linear interpolation (see Kim et al., 2005a). Since the 

collected speed data is averaged across different vehicle classes (i.e., automobile, trucks) and no 

data was available for individual classes of vehicles, we assumed that the truck being routed 

could also cruise at the collected average speeds. We implemented all of our algorithms and 

methods in Matlab 7 and executed them on a Pentium IV machine (with CPU 1.6 GHz and 1024 

MB RAM) running Microsoft Windows XP operating system. 

 

Our experimental study is outlined as follows: Section 4.1 describes the estimation and modeling 

process for recurrent congestion and illustrates through a sample arc of the network. Section 4.2 

explains the steps of generating DRPs and estimating travel time distributions between sites. 

Section 4.3 presents experimental results of identifying and selecting robust STD-TSP tours 

without time windows and reports savings from employing the dynamic routing policy over the 

static routing policy between pair of sites. Section 4.4 evaluates the performance of routing 

policies identified in Section 4.3 after setting the sites’ time windows as described in Section 

3.2.1.1. 
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Figure 1. Southeast Michigan Road Network Considered for Experimental Study 

 

8.1. Estimating Congestion States 

The proposed dynamic routing algorithm calls for identification of different congestion states, 

estimation of their state transition rates, and estimation of arc traverse times by time of the day. 

To better illustrate the modeling of congestion states, we present the data and congestion state 

identification and separation procedures for an example arc (7, 8). The speed data for arc (7, 8) 

for the weekdays is illustrated in Figure 2a. The mean and standard deviations of speed for the 

arc (7, 8) are plotted in (Figure 2b). From Figure 2a and Figure 2b, it can be clearly seen that the 

traffic speeds follow a non-stationary distribution that vary highly with time of the day. 

 

Given the traffic speed data, we employed the Gaussian Mixture Model (GMM) clustering 

technique to determine the number of recurrent-congestion states for each arc by time of the day. 

In particular, we used the greedy learning GMM clustering method of Verbeek et al. (2003) for 

its computational efficiency and performance. After obtaining the state clusters for each time 

interval t, we first estimate the time-dependent cut-off speeds if GMM yields more than one 

congestion state at t. Next, given cut-off speeds, we then estimate the  parameters of the 

Gaussian distributions for state transitions for congestion state i from t to t+1 for all t, i.e., (

, 1 , 1;i i
t t t t+ +µ Σ ). Applying GMM for arc (7,8), for instance, recommended two clusters of congestion 

states for almost all time intervals except few. Figure 3a illustrates the transition rates for arc (7, 

8) with a 15 minute time interval resolution during the day. Note that, we are using two clusters 

for arc (7, 8) in all time intervals for presentation purpose (other than increasing computational 

burden, there are no other consequences). In Figure 3a, the �� denotes the probability of state 

transition from congested state to congested state and �� denotes the probability of state 

transition from uncongested state to uncongested state. The mean travel time of arc (7, 8) for 

congested and uncongested traffic states is given in Figure 3b. 

 
Distribution 
Center 
Supplier Site 

Node 
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Figure 2. For arc (7,8)  (a) raw traffic speeds for  May, June, and July 2009 weekdays (b) mean (mph) and standard 

deviations (mph) of speeds by time of the day with time interval resolution of 15 minutes. 

 

 

Figure 3. For arc (7, 8) (a) congestion state-transition probabilities: α, congested to congested transition; β, uncongested to 

uncongested transition probability (b) mean travel time(min.) for congested and uncongested congestion states. 

 
8.2. Estimating Travel Time Distributions between Sites 

Using the previous section’s results, e.g., time and congestion state dependent distribution of arc 

travel times and congestion state transition probabilities, we employed the dynamic routing 

algorithm in Section 3.1.2 to determine the dynamic routing policy jkπ between every pair of 

customer sites ( ),j k  at different departure times. Next, we estimate the travel time distribution 

between every pair of sites. This can be achieved by simulating the optimal dynamic policies in 

two different ways: using estimated arc travel time distributions as described in Section 3.1.2. or 

using the available historical data for 66 weekdays. We choose to use the historical data because 

of the link interactions and dependencies not captured through the estimation of arc travel time 

distributions.  

 

In most real transportation networks, the congestion states among the arcs are highly correlated. 

As a result, independent simulation of each arc’s congestion states leads to uncorrelated arc 

states and might cause incorrect travel time distributions. To avoid such problems, we simulated 

the network with historical data one day at a time. Specifically, we routed the vehicle from origin 

site to the destination site; at each decision epoch (e.g. node), the historic arc speed data was 

used to identify the congestion state and determine which arc to traverse next. We ran the 

simulations for 66 weekdays of May, June, and July 2009 and obtained 66 samples for all pairs 

of sites at different departure times.  
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Although the number of runs was small, we believe it captured the dependency of arc congestion 

states better and accurately predicts the routing scenario’s outcome. In addition, due to weather 

patterns/seasonality, traffic dynamics do change over extended periods. Hence, it is generally 

inappropriate to use data from extended periods (e.g., a year) to establish the tours and the 

dynamic routing policies. For these reasons, it might be best to re-optimize the tour and the 

dynamic routing policies at regular intervals (e.g., monthly or quarterly). 

 
8.3. Building STD-TSP Tours 

In this section, we construct the robust STD-TSP tours using the effective travel time distribution 

resulting from dynamic routing between every pair of sites (as explained in section 4.2). To 

quantify the benefits of using a dynamic routing policy, we also identify and select the robust 

STD-TSP tours with a static routing policy between each pair of sites.  In milk-run tours, the 

number of tour stops in urban areas is generally equal or greater than 5 stops per tour:  

approximately 5.6 in Denver (Holguin-Veras and Patil, 2005), 6 in Calgary (Hunt and Stefan, 

2005), and 6.2 in Amsterdam (Vleugel  and Janic, 2004). Our case study application also 

conforms to these estimates as there are 5 stops (i.e., one DC and four supplier sites). Although 

there are hundreds of suppliers replenishing the same DC, we only consider the subset of 

suppliers that were part of the same TSP tour. The determination of such supplier clusters is 

beyond the scope of this study and is assumed to be performed a priori based various factors 

(e.g., geographical supplier locations, nature of cargo) as in CFR. There were no pre-established 

requirements on the sequence of site visits and the truck had enough capacity to visit all sites in a 

single tour. As in most JIT environments, the time windows in this case study were set by 

trucking and OEM’s logistics division and accepted by the suppliers as part of the sourcing 

contract. Therefore, we herein consider the case without time windows and then set the time 

windows for on-time performance in Section 4.4.  In the STD-TSP of the case study application, 

we have node 80 as the DC (origin site) and nodes 61, 103, 51, and 132 as the supplier sites (Fig. 

1). Accordingly, there are (5-1)!=24 possible dominated and non-dominated tours. To capture the 

effect of traffic congestion, we consider 48 trip start times evenly spaced every half an hour and 

determine tours for each of them separately (Figure 4). We assume all the sites’ service times are 

15 minutes. Since there are 4 sites other than the DC, the total service time is 60 minutes for each 

trip. To compare the results we define STD-TSP tours with following two site-to-site routing 

policies: 

1. STD-TSP tour with static routing policies (Static policy): In practice, almost all commercial 

logistics software aims to identify TSP tours based on a static path between a pair of sites. First, 

for a given site pair and departure time, all paths are identified and then their expected path travel 

times are calculated according to the travel time distributions of paths’ arcs. Next, the path with 

the least expected cost is selected as the static path to be used in the TSP tour. Then, for every 

trip start time, we select a robust TSP tour by solving STD-TSP using travel time distributions 

between pairs of sites estimated through the static paths.  
 

2. STD-TSP tour with dynamic routing policies (Dynamic policy): In this policy, the paths between 

pairs of customers are dynamic routing policies (DRP). Based on the arc travel time distributions, 

congestion states and transition probabilities, we first generate DRPs between every pair of sites 

as described in Section 3.1. Then, these DRPs are simulated to find the site-to-site travel time 

distributions as described in Section 4.2. Finally, for every trip starting time, the robust TSP tour 

is selected using the DP algorithm for STD-TSP based on the simulated travel time distributions 

between pair of sites. 
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In identifying and selecting the robust tour, we set standard deviation coefficient in the cost 

function 1.65b = such that the robust tour’s trip duration is less than the mean-variance objective 

97.5% of the time. We calculated the mean and standard deviations of trip times for all static and 

dynamic policy tours for evenly spaced 48 trip starting times beginning at 00:00am. The results 

revealed that 4 out of the 24 possible tours dominate the other tours for all 48 trip starting times 

for both static and dynamic policies. These dominant tours are: tour 1: 

80→132→103→51→61→80; tour 2: 80→132→51→103→61→80; tour 3: 

80→61→103→51→ 132→80; and tour 4: 80→61→51→103→132→80. Among these four 

tours, tour 1 is the most selected tour by both static (40 times out of 48) and dynamic (41 times 

out of 48) policies. We report tour 1 mean travel time and standard deviations in Figure 4 for 

every starting time during the day. Note that these results are obtained by simulating the tour 1 

using the historic data (66 weekdays of May, June, and July 2009). 

 

 
Figure 4. The tour 1’s (a) mean tour travel time (trip time - service times), (b) standard deviation for 48 starting times during 

the day for static and dynamic policies. 

 

As expected, the savings are higher and rather significant during peak traffic times (e.g., around 

8:00 and 17:00) and insignificant during uncongested periods. These results clearly illustrate the 

importance of using dynamic routing between pairs of sites. To further illustrate the savings, we 

present the selected robust tours and their mean and standard deviation of travel times identified 

by the two policies for two particular departure times in Table 1. 
 

Table 1. Tours, tours mean travel times and standard deviations at two departure times for the 

static and dynamic policies 

Policy
Robust 

Tour 
Departure Time

Mean Trip Time 

(min.)

Mean Tour Travel 

Time (min.)

Std. Dev. of Tour 

Travel Time (min.)

Static tour 1 7:00 253.8 193.8 13.08

Dynamic tour 1 7:00 224.5 164.5 10.37

Static tour 1 7:30 242.4 182.4 13.27

Dynamic tour 2 7:30 216.1 156.1 10.19
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8.4. Evaluation of STD-TSP Tours with Time Windows 

In the previous section, we selected the robust tours associated with static and dynamic routing 

policies across 48 starting times. We originally assumed no time windows. In this case study 

application, the determination of the TSP tour and the setting of time windows are sequential 

tasks. Specifically, the carrier first determines the tours for transportation efficiency and then the 

carrier and OEM’s logistics division jointly set the spacing of time windows so as to maximize 

the on-time delivery performance. Next, we present and compare the trip duration results of 

using static and dynamic routing policies in a scenario where there are 4 DC replenishment shifts 

in each day and the shift starting times (ST) are  ST= {0:00; 6:00; 12:00; 18:00}. We then 

present the results after setting time windows.  

 

According to the results in the preceding section, tour 1 is the most selected tour by both static 

and dynamic policies across different trip start times. The other robust tours identified are tours 

2, 3, and 4 in decreasing order of selection frequency. In Table 2 and Table 3, we provide the 

mean and standard deviation of trip times (tour travel time + service times) of these four 

dominant tours and their associated standard deviations at shift starting times when following 

static and dynamic policies between pair of sites, respectively. These results are obtained by 

simulating the corresponding tours using the historic data (66 weekdays of May, June, and July 

2009). 
 

 

Table 2. Mean of tour trip times at the beginning of shifts based on static and dynamic policies 

(without time windows) 

Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv.

1 178.7 174.5 2.4% 238.2 212.9 10.6% 207.2 184.4 11.0% 229.1 210.5 8.1%

2 177.2 174.0 1.8% 241.6 219.3 9.2% 207.8 185.7 10.6% 233.5 207.8 11.0%

3 181.2 179.0 1.2% 236.4 220.0 6.9% 209.2 189.6 9.4% 237.9 220.1 7.5%

4 183.6 181.1 1.4% 248.3 224.9 9.4% 205.1 193.5 5.7% 242.6 222.5 8.3%

Policy

T
o

u
r

Mean Tour Trip Times

ST 0:00 6:00 12:00 18:00

  
 

Table 3. Standard deviations of tour trip times at the beginning of shifts based on static and 

dynamic policies (without time windows) 

Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv.

1 7.8 7.0 10.3% 13.0 10.1 22.8% 10.9 8.4 23.4% 14.1 9.7 31.1%

2 8.3 7.5 9.5% 13.6 11.2 17.8% 12.4 9.8 20.6% 14.3 10.8 25.0%

3 7.8 7.7 1.0% 14.5 11.6 20.3% 11.9 10.5 11.9% 14.3 11.1 22.4%

4 9.8 8.6 12.0% 15.2 12.2 20.3% 12.4 9.6 23.0% 14.8 13.0 12.6%

ST

Standard Deviation of Tour Trip Times

Policy

T
o

u
r

12:00 18:000:00 6:00

 
 

Table 2 results indicate that the mean tour trip time savings associated with dynamic routing are 

most in the two congested start times, namely 6:00 and 18:00, which are close to the urban area 

peak traffic times.  
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We further note that the savings with start time at 12:00 is also as high as the congested periods 

(i.e., 6:00 and 18:00). The results in Table 5 for the standard deviation of tour trip times 

demonstrate the savings in variability similar to those in mean trip times. 

 

The robust tour for each starting time is selected according to the mean-variance objective using 

the results in Table 4 and Table 5. These mean-variance objectives for the four dominant tours 

are presented in Table 6 along with that of the selected robust tour in the last row. The selected 

robust tours corresponding to static and dynamic policies are highlighted in bold for each start 

time. The dynamic policy’s robust tour achieves the most savings over that of the static policy 

for trips starting at 12:00 and the mean-variance objective savings range from 2.6% to 12.0% 

with an average of 9.2%. The mean tour trip time savings based on the robust tours range from 

1.5% to 11.0% with an average of 8.1% as can be calculated from Table 4. These tour trip 

duration savings correspond to the improvement in transportation efficiency. Similarly, the 

savings in the standard deviation of tour trip times based on the robust tours range from 16.5% to 

23.7% with an average of 21.6% as can be calculated from Table 5. These savings correspond to 

the improvement in tour trip time reliability affecting the on-time delivery performance. 

 

Table 4. Mean-variance objectives of tour trip times at the beginning of shifts based on static 

and dynamic policies (without time windows) 

Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv. Sta. Dyn. Improv.

1 191.5 186.0 2.9% 259.7 229.5 11.6% 225.3 198.2 12.0% 252.3 226.5 10.2%

2 190.9 186.4 2.4% 264.1 237.8 10.0% 228.2 201.9 11.5% 257.2 225.5 12.3%

3 194.1 191.8 1.2% 260.3 239.1 8.2% 228.8 206.9 9.6% 261.5 238.4 8.8%

4 199.7 195.3 2.2% 273.4 244.9 10.4% 225.6 209.3 7.2% 267.1 243.9 8.7%

190.9 186.0 2.6% 259.7 229.5 11.6% 225.3 198.2 12.0% 252.3 225.5 10.6%Robust Tour

Policy

T
o

u
r

  Mean-Variance Tour Trip Time Objectives

ST 0:00 6:00 12:00 18:00

 

 

Table 6 results indicate that tours 1 and 2 are dominant tours for the four start times. In the 

remainder of section, we assume that tour 1 is selected for both static and dynamic policies. In 

fact, tour 1 is indeed the selected robust tour for start times 6:00 and 12:00 and its performance 

difference from the selected robust tour is small for starting times of 0:00 and 18:00.  

 

Next, we set the time windows according to the procedure described in Section 3.2.1.1. Here, we 

assume the width of the time windows is 30 minutes for all supplier sites. Further, we allow 

unrestricted waiting for early arrivals at all sites. We illustrate the time windows through their 

centers (mean site arrival times) and deviations around centers (standard deviation of site arrival 

times) in Table 5 for the selected robust tour 1.  
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Table 5. Simulated mean arrival times (with time windows) to the sites in the sequence of tour 1 

based on static and dynamic policies 

Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn.

132 18.7 18.5 26.0 20.3 21.6 19.9 23.8 23.6 1.2 1.0 1.9 1.6 1.7 1.7 1.8 1.8

103 67.3 66.6 87.9 80.7 79.2 74.1 102.7 93.5 3.3 2.8 5.2 4.4 4.7 3.9 6.2 4.8

51 98.7 97.9 131.6 113.9 116.8 108.8 137.9 128.6 4.6 3.8 7.3 6.0 6.4 5.3 9.1 6.3

61 147.0 143.9 197.2 172.5 169.8 154.3 192.2 180.2 6.3 5.5 10.3 8.3 8.7 7.0 11.8 8.0

80 179.2 175.1 240.1 214.2 208.4 185.6 231.8 212.7 7.8 7.0 13.1 10.1 11.0 8.4 14.2 9.8

S
it

e

Policy

ST

Mean Site  Arrival Times Std. Dev. of Site Arrival Times

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00

 

 

The mean and standard deviation of return times to DC (node #80) corresponds to the mean and 

standard deviation of the tour 1 trip times. Note that the means and standard deviations of DC 

return times in Table 5 are different than those of tour trip times without time windows reported 

in Table 2. These differences are due to the waiting at the sites upon early arrival. The waiting 

due to early arrival increases (decreases) the mean (standard deviation) of the tour trip time. 

  

Table 6 presents the service level performance (on-time deliver) of static and dynamic policies 

for tour 1 at different start times. These results are based on simulating tour 1 using dynamic and 

static policies between sites subject to the time windows set for each policy in Table 5. Table 6 

results show that as congestion increases, the dynamic policy taking real-time traffic information 

into account becomes increasingly superior to the static policy planning methods. The on-time 

delivery performance can be increased up to 8% for a site and up to 4% for a tour (starting at 

18:00). We conclude that the dynamic policy not only decreases transportation cost (measured by 

trip time), but also increases the delivery service level performance (measured by on-time 

delivery). 
 

Table 6. On-time delivery performances (in percentages) of the policies with time windows 

Sta. Dyn. Sta. Dyn. Sta. Dyn. Sta. Dyn.

132 100 100 100 100 100 100 100 100

103 100 100 100 100 100 100 100 100

51 100 100 96 100 98 100 95 100

61 98 100 91 98 96 98 91 97

80 97 98 88 94 92 96 86 94

On-time delivery performances (in percentages)

12:00 18:00

S
it

e

Policy

ST 0:00 6:00

 
 

The results in Table 6 are obtained with the assumption that there is unrestricted waiting for early 

arrivals at all sites. Further, the time windows are centered on the mean site arrival times 

depending on whether static or dynamic routing policy is used between pairs of sites. As 

explained in Section 3.2.1.1, one could shift the time windows to the right of the center (expected 

site arrival time) to reduce the late arrival occurrences. However, the effectiveness of this 

modification relies on the maximum allowable waiting time imposed for early arrivals. To 

understand the effect of shifting time windows, we adapted time windows of the static policy as 

the time windows of the dynamic policy. This allows us to retain the assumption of unrestricted 
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waiting for early arrivals and compare the on-time delivery results of dynamic policy with those 

in Table 6. The results of on-time delivery with dynamic policy using the time windows of the 

static policy are presented in Table 7. With this setting, the on-time delivery performance of the 

truck following the dynamic policy is 100 percent for all starting times and for all sites based on 

historic data (66 weekdays of May, June, and July 2009). Clearly, this improvement in on-time 

performance is attained with increased waiting at sites. Table 7 also presents the mean waiting 

times at sites.  

 

Table 7. On-time delivery performances (in percentages) and average waiting times (in minutes) 

for dynamic policy when setting time windows of dynamic policy as the time windows of static 

policy 

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00

132 100 100 100 100 0 0 0 0

103 100 100 100 100 0 0.06 0 0

51 100 100 100 100 0 3.49 0.01 0

61 100 100 100 100 0 10.12 2.21 0

80 100 100 100 100 0 11.91 9.55 0

S
it

e

ST

On-time delivery performances (in percentages) Waiting times (in minutes)

 

 

9. CONCLUSIONS 

In this work, we studied the STD-TSP with dynamic routing problem. It is an extension of 

stochastic TSP and aims to find a robust milk-run tour of a given set of sites (i.e., DC and 

suppliers) while dynamically routing on a stochastic time-dependent road network between sites’ 

visits to meet the time windows requirements. The solution is comprised of static TSP tour of 

sites that remains fixed for extended periods (e.g., months) and a dynamic routing policy 

between pairs of sites. The static tour is motivated by the fact that tours cannot be changed on a 

regular basis (e.g., daily) for milk-run pickup and delivery in routine JIT production. The 

objective trades off the expected duration of the tour with its variability, capturing the tradeoff 

between transportation efficiency and on-time delivery service level.  

 

We proposed a sequential solution approach. We first determined the travel time distributions 

between each pair of sites by formulating and solving a stochastic dynamic programming 

formulation for the dynamic routing problem on a stochastic time-dependent road network. The 

dynamic routing model exploits the real-time traffic information available from ITS. We 

proposed effective data driven methods for accurate modeling and estimation of recurrent 

congestion states and their state transitions. Whereas we assumed arcs are independent in 

generating dynamic routing policies, we simulated dynamic routing policies using historic data 

to capture the arc dependencies in all our experiments. Using simulation results, we estimated the 

site-to-site travel time distributions. Once the travel time distributions were estimated for every 

pair of sites at different departure times, we employed a stochastic time-dependent dynamic 

programming (STD-DP) to solve the problem and select the robust tour minimizing the mean-

variance objective of the trip time. We also provided a time window setting procedure to increase 

on-time delivery performance and support workload leveling. 
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We tested the proposed methodology on a real case study application using the road network 

from Southeast Michigan. This study corresponded to an automotive JIT production system 

where an OEM’s DC is replenished by milk-run pickup and deliveries from multiple suppliers. 

The study road network covered major freeways and highways in and around the Detroit 

metropolitan area. To quantify the benefits of using dynamic policy, we compared the selected 

robust STD-TSP tours with those of the static routing policy between pair of sites. We first 

experimented without time windows for both static and dynamic policies. The results showed 

that the dynamic policy saves 8.1% in trip duration on the average and reduces standard 

deviation of trip duration by 21.6% on the average. After setting the time windows according to 

the expected site arrival times, we showed that the on-time delivery performance can be 

increased up to 8% for a site and up to 4% for a tour by using dynamic routing policy. Lastly, we 

showed that it is possible to further increase the on-time performance by setting the time 

windows of dynamic routing policy according to those of the static policy. We concluded that the 

dynamic policy not only decreases transportation cost (measured by trip time), but also increases 

the delivery service level performance (measured by on-time delivery). 

 
10. Recommendations for Further Research 

There are several promising extensions of this research. The dynamic routing policies are 

generated by assuming arc independence. While we have partly compensated for this by 

simulating the policies using actual historical data from the ITS network, the policies themselves 

are not guaranteed to be optimal if there are significant arc interactions. Hence, a future study is 

to account for the link interactions in modeling congestion and generating dynamic routing 

policies. Another future study is to integrate the proposed approach within the more general 

problem of VRP, where the supplier-route assignment decisions are made in addition to the 

routing of individual vehicles.  

 
11. Recommendations for Implementation 

The research identified a number of recommendations for implementation to help leverage the 

full potential of dynamic routing of freight vehicles using real-time ITS information.  

 

• Implementation mechanisms for ensuring data quality. Recommendations include collecting 

and sharing up-to-date sensor maintenance and placement information in the implementation 

network. This allows the users of the models and algorithms developed to revise their 

estimates of the travel times as well as traffic behavior under incident conditions. While the 

majority of the arteries do not have sensors, we found that some of the sensors in major 

highways are inactive. The absence of these sensors on the large segments of highways 

creates quality problems associated with distribution estimations for travel times as well as 

state transitions. In addition, the data collected from the some of the sensors are found to be 

inaccurate, e.g. inconsistent speed data, which may be attributable to weather, sensor’s health 

state, and communication network inefficiencies. Recommendations for the missing sensor 

information or inaccurate data captures include benchmarking the traffic condition on the 

network segments devoid of sensors with those having sensors and reconciling and using a 

linear regression estimation of the speed data at any given time between adjacent sensors on 

a highway segment.  

 



• The off-line routing policy generation is impractical given the large number of links and 

incident state possibilities. Recommendation for implementation is to communicate the route 

actions (which road network link to select next) to the driver through a wireless connection 

(e.g. satellite) in real time. The identification of the real

through a centralized dynamic routing decision support system implementing the

algorithms developed in this research. The decision support system is recommended to 

extract the real-time traffic congestion information from the ITS server. When the server is 

down or there are communication problems, the default operating mo

support system is to assume the long

the recommended framework for data communication and decision support integration.

 

Figure 5. Recommended framework
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line routing policy generation is impractical given the large number of links and 

incident state possibilities. Recommendation for implementation is to communicate the route 

ch road network link to select next) to the driver through a wireless connection 

(e.g. satellite) in real time. The identification of the real-time routing decisions is achieved 

through a centralized dynamic routing decision support system implementing the

algorithms developed in this research. The decision support system is recommended to 

time traffic congestion information from the ITS server. When the server is 

down or there are communication problems, the default operating mode for the decision 

support system is to assume the long-term congestion state probabilities. Figure 16 illustrates 

the recommended framework for data communication and decision support integration.

Recommended framework for data communication and decision support integration

line routing policy generation is impractical given the large number of links and 

incident state possibilities. Recommendation for implementation is to communicate the route 

ch road network link to select next) to the driver through a wireless connection 

time routing decisions is achieved 

through a centralized dynamic routing decision support system implementing the models and 

algorithms developed in this research. The decision support system is recommended to 

time traffic congestion information from the ITS server. When the server is 

de for the decision 

term congestion state probabilities. Figure 16 illustrates 

the recommended framework for data communication and decision support integration. 

 
for data communication and decision support integration 



26 

 

Bibliography 

 

Bertsekas, D.P., 2001. Dynamic programming and optimal control. Volume I, Athena Scientific, 

Belmont, MA. 

Chang, T.-S., Wan, Y.-W., OOI, W.T., 2010. A stochastic dynamic traveling salesman problem 

with hard time windows. European Journal of Operational Research, 198(3): 748-759. 

Chen, C., Skabardonis, A., Varaiya, P., 2003. Travel time reliability as a measure of service, 

82nd Annual Meeting Transportation Research Board, Washington, D.C. 

Chuah, K. H., J. C. Yingling, 2005. Routing for just-in-time supply pickup and delivery system. 

Transportation Science, 39(3): 328-339. 

Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M.M., Soumis, F., 2000. The VRP with 

time windows. In: P. Toth and D. Vigo (Editors), The Vehicle Routing Problem. SIAM 

Monographs on Discrete Mathematics and Applications. SIAM, Philadelpia, PA. 

Figliozzi, M.A., 2010. The impacts of congestion on commercial vehicle tour characteristics and 

costs. Transportation Research Part E 46: 496-506. 

Golob, T.F., Regan, A.C., 2003. Traffic congestion and trucking managers’ use of automated 

routing and scheduling. Transportation Research Part E, 39(1): 61-78. 

Groenevelt, H., 1993. The just-in-time system. In: S.C. Graves, A.H.G. Rinnooy Kan and P.H. 

Zipkin (Editors), Handbooks in Operations Research and Management Science. North-

Holland, Amsterdam, pp. 629-670. 

Holguin-Veras, J., Patil, G., 2005. Observed trip chain behavior of commercial vehicles. 

Transportation Research Record, 1906: 74-80. 

Houck, D., Picard, J., Queyranne, M., Vegamunti, R., 1980. The travelling salesman as a 

constrained shortest path problem: Theory and computational experiment. Opsearch, 

17(2-3): 93-109. 

Hunt, J., Stefan, K., 2005. Tour-based microsimulation of urban commercial movements, 16th 

International Symposium on Transportation and Traffic Theory, Maryland. 

Ichoua, S., Gendreau, M., Potvin, J.-Y., 2003. Vehicle dispatching with time-dependent travel 

times. European Journal of Operational Research, 144: 379-396. 

Johnson, D.S., McGeoch, L.A., 1997. The traveling salesman problem: A case study in local 

optimization. In: E. Aarts and J.K. Lenstra (Editors), Local Search in Combinatorial 

Optimization. Wiley, London, pp. 215-310. 

Jula, H., Dessouky, M., Ioannou, P.A., 2006. Truck route planning in nonstationary stochastic 

networks with time windows at customer locations. IEEE Transactions on Intelligent 

Transportation Systems, 7(1): 51-62. 

Junger, M., Reinelt, G., Rinaldi, G., 1995. The traveling salesman problem. In: M. Ball, T. 

Magnanti, C. Monma and G. Nemhauser (Editors), Network Models. North Holland, 

Amsterdam, pp. 225-330. 

Kim, S., Lewis, M.E., White III, C.C., 2005a. Optimal vehicle routing with real-time traffic 

information. IEEE Transactions on Intelligent Transportation Systems, 6(2): 178-188. 

Kim, S., Lewis, M.E., White III, C.C., 2005b. State space reduction for non-stationary stochastic 

shortest path problems with real-time traffic congestion information. IEEE Transactions 

on Intelligent Transportation Systems, 6(3): 273-284. 

Lambert, V., Laporte, G., Louveaux, F., 1993. Designing collection routes through bank 

branches. Computers & Operations Research, 20(7): 783-791. 



27 

 

Laporte, G., Louveaux, F., Mercure, H., 1992. The vehicle routing problem with stochastic travel 

times. Transportation Science, 26(3): 161-170. 

Laporte, G., 2009. Fifty years of vehicle routing. Transportation Science, 43(4): 408-416. 

Laporte, G., 2010. A concise guide to the Traveling Salesman Problem. Journal of the 

Operational Research Society, 61(1): 35-40. 

Malandraki, C., Dial, R.B., 1996. A restricted dynamic programming heuristic algorithm for the 

time-dependent traveling salesman problem. European Journal of Operational Research, 

90: 45-55. 

Ohlmann, J.W., Fry, M.J., Thomas, B.W., 2010. Route design for lean production systems. 

Transportation Science, In Press. 

Psaraftis, H.N., Tsitsiklis, J.N., 1993. Dynamic shortest paths in acyclic networks with 

Markovian arc costs. Operations Research, 41: 91-101. 

Verbeek, J.J., Vlassis, N., Kröse, B., 2003. Efficient greedy learning of Gaussian Mixture 

Models. Neural Computation, 5(2): 469-485. 

Vleugel , J., Janic, M., 2004. Route choice and the impact of 'logistic routes'. In: E. Taniguchi 

and R. Thompson (Editors), Logistics systems for sustainable cities. Elsevier. 


