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ABSTRACT 
 
In just-in-time (JIT) manufacturing environments, on-time delivery is a key performance 
measure for dispatching and routing freight vehicles. Growing travel time delays and variability, 
attributable to increasing congestion in transportation networks, are greatly impacting the 
efficiency of JIT logistics operations. Recurrent and non-recurrent congestion are the two 
primary reasons for delivery delay and variability. Over 50 percent of all travel time delays are 
attributable to non-recurrent congestion sources such as incidents. Despite its importance, state-
of-the-art dynamic routing algorithms assume away the effect of these incidents on travel time. 
In this study, we propose a stochastic dynamic programming formulation for dynamic routing of 
vehicles in non-stationary stochastic networks subject to both recurrent and non-recurrent 
congestion. We also propose alternative models to estimate incident induced delays that can be 
integrated with dynamic routing algorithms.  
 
Proposed dynamic routing models exploit real-time traffic information regarding speeds and 
incidents from Intelligent Transportation System (ITS) sources to improve delivery performance. 
Results are very promising when the algorithms are tested in a simulated network of southeast 
Michigan freeways using historical data from the MITS Center and Traffic.com. 
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1. EXECUTIVE SUMMARY 

The overall goal of this project is to develop effective static and dynamic routing algorithms for 
congestion avoidance and reduction for commercial cargo carriers given real-time information 
regarding recurring and non-recurring congestion by Advanced Traveler Information Systems 
(ATIS).  
 
Just-in-time supply chains require reliable deliveries. However, travel times on road networks are 
unfortunately stochastic in nature. This randomness might stem from multiple sources. One of 
the most significant sources is the high volume of traffic due to commuting. This kind of traffic 
congestion is called recurrent congestion for it usually occurs at similar hours and days on a 
given network. The most used approach to deal with recurrent congestion is building ‘buffer 
time’ into the trip, e. starting the trip earlier to end the trip on time.  However, these buffers 
significantly increase driver and equipment idle time (i.e., reduce utilization).  
 
Intelligent Transportation Systems (ITS) that collect and provide real-time traffic data are now 
available in most urban areas and traffic monitoring systems are beginning to provide real-time 
information regarding incidents. In-vehicle communication technologies, both GPS and non-GPS 
based, are also enabling drivers’ access to this information, facilitating vehicle routing and re-
routing for congestion avoidance. We are proposed dynamic vehicle routing models that use ITS 
traffic information to avoid both recurrent and non-recurrent congestion in stochastic 
transportation networks. 
 
We developed a dynamic vehicle routing model based on Markov decision process (MDP) 
formulation for the non-stationary stochastic shortest path problem. The state set of the MDP is 
based on the position of the vehicle, the time of the day, and the traffic congestion states of the 
roads. ITS data from southeast Michigan road network, collected in collaboration with M-DOT’s 
Michigan Intelligent Transportation System Center (MITS) and Traffic.com, is used to illustrate 
the performance of the proposed models. Recurrent congestion states of the roads and their 
transition patterns are determined using historic and real-time traffic data from MITS Center. In 
particular, states are determined using Gaussian mixture model (GMM) based clustering. To 
address issues of ‘curse of dimensionality’ common to MDPs and the recognition that 
information from distant arcs are unreliable and less likely to influence ‘optimal’ path selection, 
we formulated the MDP state space such that only the roads/arcs that are in proximity to the 
vehicle affect local decisions. 
 
Our dynamic routing models also account for non-recurring congestion stemming from incidents. 
Our incident models attempt to address two questions: 1) Estimate the affect of incident on travel 
time (incident-induced travel time delay) and 2) Estimate the incident clearance time (incident 
clearance time). We estimate incident-induced arc travel time delay using a decay function based 
on incident severity and duration parameters. Time required to clear the incident and restore the 
traffic is usually defined as incident clearance time and most of the delay due to incident is 
experienced during this period. We model the incident-clearance process using a Markov chain 
with an eventual absorbing state of incident clearance. Given that a road network may encounter 
both types of congestion concurrently, our dynamic routing models integrally account for both 
types of congestion and their interactions.  
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Our experiments clearly illustrate the superior performance of the SDP-derived dynamic routing 
policies over traditional static-path-based routing. The savings however depend on the network 
states as well as the time of day. The savings are higher during peak times and lower when traffic 
tends to be static (especially at nights). Experiments also show that explicit treatment of non-
recurrent congestion stemming from incidents can yield significant savings.  

 

2. ACTION PLAN FOR RESEARCH 

We start with the data collection from multiple directions. On the network structure (network 
topology, design parameters, arc characteristics) side, we developed a network represents 
freeway and highways of the southeast Michigan. We test our dynamic routing decisions as well 
as incident (i.e. accidents, breakdowns) delay models on this network.  

For southeast Michigan corridor arc velocity data, we have collaborated with the MITS Center 
and signed a data-sharing agreement with Traffic.com. We have had multiple meetings with 
MITS Center to develop a better understanding for their traffic monitoring system (for southeast 
Michigan highways) and have also received data representing several months of traffic flow 
(such as velocity, occupancy) for the southeast Michigan highways. We have analyzed this data 
to improve the quality of the models being developed for dynamic vehicle routing decision 
support when operating with access to Advanced Traveler Information Systems (ATIS) 
information. For instance, through our analyses, we identified the need for representing each 
arc’s congestion with a different number of states (and not force all arcs to be modeled with two 
states – i.e., congested and uncongested). Accordingly, we have refined the recurrent congestion 
state modeling by employing the Gaussian Mixture Model clustering method for automated 
detection of number of states and state velocity thresholds. In addition to MITS Center data, we 
now have access to Traffic.com’s sensor database covering majority of highways in the southeast 
Michigan corridor. These datasets (and the networks resulting from them) are playing a critical 
role for evaluating and refining our dynamic routing algorithms. For incident data collection, we 
collaborated with the MITS Center. We received several months of incident data from Monroe 
Pendelton and Mark Burrows of MITS Center. This data set allowed us to initiate modeling of 
non-recurring congestion (incidents and special events) in routing applications. In addition to 
MITS Center data, Traffic.com also has an extensive archive of incident data which we are 
currently using to develop parametric incident delay models, models of particular interest to 
SEMCOG. 

We have initially constructed a simple hypothetical road network simulator to build, test, and 
validate our algorithms in Matlab. This simulator allowed us to experiment with various 
network, velocity and incident scenarios. In the second year, we developed a southeast Michigan 
road network model that covers the sensors from both MITS Center and Traffic.com. We 
constructed these networks using archived historical traffic ITS data provided by our research 
partners, MITS Center and Traffic.com. One instance from this network encompasses main 
freeways and arterials extending from the intersection of I-94 and I-275 to the intersection of I-
696 and I-75. In addition to network construction, we developed a data extraction and network 
configuration tool that allowed us to automate the loop sensor velocity and incident data 
extraction from the ITS databases. This tool takes in the origin-destination coordinates as inputs 
to identify and locate loop sensors.  
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Subsequently, this tool first extracts sensor velocity data and incident data and then configures 
routing models by determining such model inputs as arc travel time distributions by departure 
time of day. This tool encompasses data extraction, filtering, and cleaning procedures and is 
based on a Microsoft Access database with Matlab interface for efficient network configuration 
and algorithmic implementation.  

We developed compact yet effective parametric incident duration and incident delay models. We 
extend and refine these models by calibrating according to the incident data obtained from the 
MITS Center and Traffic.com. In addition, we have also extended the algorithmic framework by 
incorporating more realistic “non-recurring congestion” modeling and exploitation logic into the 
algorithms.  

Extensive evaluations of our SDP algorithms on hypothetical networks revealed significant 
reductions in trip completion times in comparison with deterministic algorithms and static 
stochastic algorithms that do not account for non-recurring congestion information. We first 
developed a parametric multiplicative incident model for the incident delay. This model accounts 
for the real-time traffic congestion, incident duration, incident severity, incident response. In the 
second year, we have further extended previous incident model by coupling the parametric delay 
model with an incident clearance Markov model. The incident clearance model is a non-
stationary Markov chain model in which the incident clearance probability increases with the 
duration of the incident. Our incident model is integrated within the recurring congestion 
modeling and algorithmic framework. 

We have developed the road-network model for the southeast Michigan region and identified 
some set of origin-destination pairs for major freight routes. On these routes, we have extracted 
the road-network recurring and non-recurring congestion data sets and calibrated these arcs 
accordingly. We implemented our static and dynamic models and algorithms in these major 
freight routes and compared the performance differences between typical baseline routing 
algorithms and our stochastic dynamic routing algorithms. 

3. INTRODUCTION 

Supply chains that rely on just-in-time (JIT) production and distribution require timely and 
reliable freight pickups and deliveries from the freight carriers in all stages of the supply chain. 
The requirements have even spread to the supply chains’ service sectors with the adoption of 
cross docking, merge-in-transit, and e-fulfillment, especially in developed countries with keen 
concern in process improvement[1]. For example, in Osaka and Kobe, Japan, as early as 1997, 
52 percent (by weight) of cargo deliveries and 45 percent of cargo pickups had designated time 
windows or specified arrival times [2]. These requirements have now become the norm in the 
U.S. as well. For example, many automotive final assembly plants in Southeast Michigan receive 
nearly 80 percent of all assembly parts on a JIT basis (involving five to six deliveries/day for 
each part with no more than three hours of inventory at the plant). However, road transportation 
networks are experiencing ever growing congestion, which greatly hinders all travel and 
certainly the freight delivery performance. The cost of this congestion is growing rapidly, 
reaching $78 billion by 2005 (from $20 billion in 1985) just in the U.S. large metropolitan areas 
alone [3]. This congestion is forcing logistics solution providers to add significant travel time 
buffers to improve on-time delivery performance, causing idle vehicles due to early arrivals.  
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Figure 1, for example, illustrates the magnitude of these buffers for 2003 in the automotive 
industry heavy Detroit Metro area, reaching over 70 percent during peak congestion periods of 
the day to achieve 95 percent on-time delivery performance [4]. Given that automotive plants are 
heavily relying on JIT deliveries, this is increasingly forcing the automotive original equipment 
manufacturers (OEMs) and others to carry increased levels of safety inventory to cope with the 
risk of late deliveries.  

 
Figure 1. Extra Buffer Time Needed for On-Time Delivery with 95 Percent Confidence in 

Detroit [4] 

The average trip travel time varies by the time of day. Travel time delays are mostly attributable 
to the so called ‘recurrent’ congestion that, for example, develops due to high volume of traffic 
seen during peak commuting hours. Incidents, such as accidents, vehicle breakdowns, bad 
weather, work zones, lane closures, special events, etc. are other important sources of traffic 
congestion. This type of congestion is labeled ‘non-recurrent’ congestion in that its location and 
severity is unpredictable. The Texas Transportation Institute [5] reports that over 50 percent of 
all travel time delays are attributable to the non-recurrent congestion. Despite its importance, 
current state-of-the-art dynamic routing algorithms assume away the effect of these incidents on 
travel time. 
 
The standard approach to deal with congestion is to build additional ‘buffer time’ into the trip 
(i.e., starting the trip earlier so as to end the trip on time), as illustrated in Figure 1. Intelligent 
Traffic Systems (ITS), run by state agencies (e.g., the Michigan Intelligent Transportation 
Systems (MITS) Center in southeast Michigan) and/or the private sector (e.g., Traffic.com 
operating in many states), are providing real-time traffic data (e.g., lane speeds and volumes) in 
many urban areas. These traffic monitoring systems are also beginning to provide real-time 
information regarding traffic incidents and their severity. In-vehicle communication 
technologies, such as satellite navigation systems, are also enabling drivers access to this 
information en-route.  
 
 
 
 
 
 

Buffer 
Factor 
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4. OBJECTIVE 

The objective of our study is to develop methods for routing vehicles in stochastic road network 
environments representative of real-world conditions. In the literature, some aspects of this 
problem have been studied at some level but there does not exist any study that takes into 
account all aspects of our dynamic routing problem. 
 
Specifically, our objectives are:  

1) Methods for accurate and efficient representation of recurrent congestion, in particular,  
    identification of multiple congestion states and their transition patterns.  

2) Integrated modeling and treatment of recurrent and non-recurrent congestion  
    for vehicle routing and demonstrating the need and value of such integration.  

 

5. SCOPE 

In this paper, we precisely consider JIT pickup/delivery service, and propose a dynamic vehicle 
routing model that exploits real-time ITS information to avoid both recurrent and non-recurrent 
congestion. We limit the scope to routing a vehicle from an origin point (say depot or 
warehouse) to a destination point.  

Our problem setting is the non-stationary stochastic shortest path problem with both recurrent 
and non-recurrent congestion. We propose a dynamic vehicle routing model based on a Markov 
decision process (MDP) formulation. Stochastic dynamic programming is employed to derive the 
routing ‘policy’, as the static ‘paths’ are provably suboptimal for this problem. The MDP ‘states’ 
cover vehicle location, time of day, and network congestion state(s). Recurrent network 
congestion states and their transitions are estimated from the ITS historical data. The proposed 
framework employs Gaussian mixture model based clustering to identify the number of states 
and their transition rates, by time of day, for each arc of the traffic network. To prevent 
exponential growth of the state space, we also recommend limiting the network monitoring to a 
reasonable vicinity of the vehicle. As for non-recurrent congestion attributable to incidents, we 
estimate the incident-induced arc travel time delay using a stochastic queuing model.  
 

6. LITERATURE SURVEY 

In the classical deterministic shortest path (SP) problem, the cost of traversing an arc is 
deterministic and independent on the arrival time to the arc. The stochastic SP problem (S-SP) is 
a direct extension of this deterministic counterpart where the arc costs follow a known 
probability distribution. In S-SP, there are multiple potential objectives, and the two most 
common ones are the minimization of the total expected cost and maximization of the probability 
of being lowest cost [6]. To find the path with minimum total expected cost, Frank [7] suggested 
replacing arc costs with their expected values and subsequently solving as a deterministic SP. 
Loui [8] showed that this approach could lead to sub-optimal paths and proposed using utility 
functions instead of the expected arc costs. Eiger  et al. [9] showed that Dijkstra’s algorithm [10] 
can be used when the utility functions are linear or exponential. 
 
Stochastic SP problems are referred as stochastic time-dependent shortest path problems (STD-
SP) when arc costs are time-dependent. Hall [11] first studied the STD-SP problems and showed 
that the optimal solution has to be an ‘adaptive decision policy’ (ADP) rather than a single path. 
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In an ADP, the node to visit next depends on both the node and the time of arrival at that node, 
and therefore the standard SP algorithms cannot be used. Hall [11] employed the dynamic 
programming (DP) approach to derive the optimal policy. Bertsekas and Tsitsiklis [12] proved 
the existence of optimal policies for STD-SP. Later, Fu  and Rilett [13] modified the method of 
Hall [11] for problems where arc costs as continuous random variables. They showed the 
computational intractability of the problem based on the mean-variance relationship between the 
travel time of a given path and the dynamic and stochastic travel times of the individual arcs.  
 
They also proposed a heuristic in recognition of this intractability. Bander and White [14] 
modeled a heuristic search algorithm AO* for  the problem and demonstrated significant 
computational advantages over DP, when there exists known strong lower bounds on the total 
expected travel cost between any node and the destination node. Fu [15] discussed real-time 
vehicle routing based on the estimation of immediate arc travel times and proposed a label-
correcting algorithm as a treatment to the recursive relations in DP. Waller and Ziliaskopoulos 
[16] suggested polynomial algorithms to find optimal policies for stochastic shortest path 
problems with one-step arc and limited temporal dependencies. Gao and Chabini [17] designed 
an ADP algorithm and proposed efficient approximations to time and arc dependent stochastic 
networks. An alternative routing solution to the ADP is a single path satisfying an optimality 
criterion. For identifying paths with the least expected travel (LET) time, Miller-Hooks and 
Mahmassani [18] proposed a modified label-correcting algorithm. Miller-Hooks and 
Mahmassani [19] extends [18] by proposing algorithms that find the expected lower bound of 
LET paths and exact solutions by using hyperpaths. 
 
All of the studies on STD-SP assume deterministic temporal dependence of arc costs, with the 
exception of Waller and Ziliaskopoulos [16] and Gao and Chabini [17]. In most urban 
transportation networks, however, the change in the cost of traversing an arc over-time is 
stochastic and there are very few studies addressing this issue.  Most of these studies model this 
stochastic temporal dependence through Markov chain modeling and propose using the real-time 
information available through ITS systems for observing Markov states. In addition, all of these 
studies assume that recourse actions are possible such that the vehicle's path can be re-adjusted 
based on newly acquired congestion information. Accordingly, they identify optimal ADPs. 
Polychronopoulos and Tsitsiklis [20] is the first study to consider stochastic temporal 
dependence of arc costs and to suggest using online information en route. They considered an 
acyclic network where the cost of outgoing arcs of a node is a function of the environment state 
of that node and the state changes according to a Markovian process. They assumed that the arc’s 
state is learned only when the vehicle arrives at the source node and the state of nodes are 
independent. They also proposed a DP procedure to solve the problem. Polychronopoulos and 
Tsitsiklis [21] consider a problem when recourse is possible in a network with dependent 
undirected arcs and the arc costs are time independent. They proposed a DP algorithm to solve 
the problem and discussed some non-optimal but easily computable heuristics. Azaron and 
Kianfar [22] extended [20] by evolving the states of current node as well as its forward nodes 
with independent continuous-time semi-Markov processes for ship routing problem in a 
stochastic but time invariant network. Kim  et al. [23] studied a similar problem as in [20] except 
that the information of all arcs are available real-time. They proposed a DP formulation where 
the state space includes states of all arcs, time, and the current node. They stated that the state 
space of the proposed formulation becomes quite large making the problem intractable.  
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They reported substantial cost savings from a computational study based on the southeast 
Michigan road network. To address the intractable state-space issue, Kim  et al. [24] proposed 
state space reduction methods. A limitation of Kim et al. [24], is the modeling and partitioning of 
travel speeds for the determination of arc congestion states. They assume that the joint 
distribution of velocities from any two consecutive periods follows a single unimodal Gaussian 
distribution, which cannot adequately represent arc travel velocities for arcs that routinely 
experience multiple congestion states.  
 
Moreover, they also employ a fixed velocity threshold (50 mph) for all arcs and for all times in 
partitioning the Gaussian distribution for estimation of state-transition probabilities (i.e., 
transitions between congested and uncongested states). As a result, the value of real-time 
information is compromised rendering the loss of performance of the dynamic routing policy. 
Our proposed approach addresses all of these limitations. 
 

6.1. Non-recurrent Incidents and Incident Clearance 

All of the shortest-path studies reviewed above consider stochastic arc costs that are mostly 
attributable to recurrent congestion. However, as stated earlier, over 50 percent of all traffic 
congestion is attributable to non-recurrent incidents and has to be accounted for dynamic routing. 
Incident-induced delay time estimation models are widely studied in the transportation literature. 
These models can be categorized into three groups based on their approaches: shockwave theory 
[25-27], queuing theory [28-33], and statistical (regression) models [34-36]. All of these 
modeling approaches have certain requirements such as loop-sensor data or assumptions 
regarding traffic/vehicle behavior. For instance, the shockwave theory based models require 
extensive loop sensor data for accurate positioning and progression of the shockwave. Both the 
queuing and shockwave theory based models require assumptions about the vehicle arrival 
process. Regression models, as empirical methods, cannot handle missing data without 
compromising on accuracy. 
 
In all these three modeling methods, the delay due to incident is a function of incident duration. 
Thus, the correct estimation of incident duration is fundamental and there are various 
distributions suggested. Gaver [37] derived probability distributions of delay under flow 
stopping. Truck-involved incident duration is studied by Golob et al. [38] and employs 
lognormal distribution. Analysis of variance is examined by Giuliano [39] and a truncated 
regression model to estimate incident duration is proposed by Khattak et al. [40] for incident 
durations in Chicago area. Gamma and exponential distributions are also suggested as good 
representations of incident duration distribution [41]. Since the likelihood of ending an incident 
is related to how long it has lasted, hazard-based models are also suggested extensively. An 
overview of duration models applications is presented by Hensher and Mannering [42]. Nam and 
Mannering [43] applied hazard-based duration models to model distribution of detect/report, 
respond and clear durations of incidents. Using the empirical data of two years from the state of 
Washington, they showed that detect/report and respond times are Weibull distributed and the 
clearance duration is log-logistic distributed. Modeling incident delay in conjunction with 
vehicle routing is in its nascence. Ferris and Ruszczynski [44] present a problem in which arcs 
with incidents fail and become permanently unavailable. They model the problem as an infinite-
horizon Markov decision process. Thomas and White [45] consider the incident clearance 
process and adopt the models in Kim et al. [23] for routing under non-recurrent congestion.  
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They model the incident delay using a multiplicative model and the incident clearance time as a 
non-stationary Markov chain, with transition probabilities following a Weibull distribution with 
an increasing instantaneous clearance rate. To model incident-induced delay, they multiply the 
incident arc’s cost by a constant and time-invariant scalar. However, they do not account for 
recurrent congestion and assume arc costs are time-invariant and deterministic. In our approach, 
we address these limitations by joint consideration of recurrent and non-recurrent congestion as 
well as more appropriate representation of incident-induced delay and clearance.   
 

7. METHODOLOGY: MODELING RECURRENT AND NON-RECURRENT 
CONGESTION 

 

7.1. Recurrent Congestion Modeling 

Let the graph ( ),G N A=
 
denote the road network where N  is the set of nodes (intersections) and 

⊆ ×A N N  is the set of directed arcs between nodes. For every node pair, ',n n N∈ , there exists an arc 

( ), '≡ ∈a n n A , if and only if, there is a road that permits traffic flow from node n  to 'n . Given an 

origin-destination (OD) node pair, the trip planner’s problem is to decide which arc to choose at each 
decision node such that the expected total trip travel time is minimized. We denote the origin and 

destination nodes with 0n  and d
n , respectively. We formulate this problem as a finite horizon Markov 

decision process (MDP), where the travel time on each arc follows a non-stationary stochastic process.  

An arc, ( ), '≡ ∈a n n A
 
is labeled as observed if its real-time traffic data (e.g., velocity) is 

available through the traffic information system. An observed arc’s traffic congestion can be in 

1r
++ ∈Ζ  different states at time t. These states represent arc’s congestion level and are 

associated with the real-time traffic velocity on the arc. We begin with discussing how to 
determine an arc’s congestion state given the real-time velocity information and defer the 

discussion on estimation of the congestion state parameters to Section 5.  Let ( )1−i

ac t
 
and ( )i

ac t
 

for i=1,2,...,r+1 denote the cutoff velocities used to determine the state of arc a given the 

velocity at time t on arc a , ( )av t . We further define ( )i

as t  as the ith traffic congestion state of 

arc a  at time t, i.e.
 

( ) { }1 1as t =  and ( ) { } { }Congested at level rr

as t r= = . For instance, if there are two 

congestion levels (e.g., r+1=2), then there will be one congested state and the other will be 

uncongested state, i.e., ( ) { } { }0 Uncongested 0as t = =  and ( ) { } { }1 Congested 1as t = = . Congestion state, 

( )i

as t
 
of the arc a  at time t can then be determined as: 

( ) ( ) ( ) ( ){ }1,if i i
a a a as t i c t v t c t

−= ≤ <  (1)  
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We assume the congestion state of an arc evolves according to a non-stationary Markov chain 
and the travel time is normally distributed at each state. In a network with all arcs observed, 

( )S t
 

denotes the traffic congestion state vector for the entire network, i.e., 

( ) ( ) ( ) ( ){ }1 2 | |, ,..., AS t s t s t s t=  at time t. For presentation clarity, we will suppress (t) in the 

notation whenever time reference is obvious from the expression. Let the state realization of 

( )S t  be denoted by ( )s t . 

 
It is assumed that arc traffic congestion states are independent from each other and have the 
single-stage Markovian property. In order to estimate the state transitions for each arc, two 
consecutive periods’ velocities are modeled jointly. Accordingly, the time-dependent single-

period state transition probability from state ( )ai s t=
 

to state ( )1aj s t= +  is denoted with 

( ) ( ){ }1 | ( )ij

a a aP s t j s t i tα+ = = = . The transition probability for arc a ,
 

( )ij

a tα , is estimated 

from the joint velocity distribution as follows: 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1

< 1 1 1

<

i i j j

a a a a a aij

a i i

a a a

c t V t c t c t V t c t
t

c t V t c t
α

− −

−

≤ ∩ + < + < +
=

≤
 (2)  

Let ( ), 1+aT t t  denote the matrix of state transition probabilities from time t to time 1+t , then 

we have ( ) ( ), 1 ij

a a
ij

T t t tα + =   . We further assume that arc a’s congestion state is independent of 

other arcs’ states, i.e. ( ) ( ) ( ){ } ( ) ( ){ } ( )'1 | 1 , 1 | ij

a a a a a aP s t s t s t P s t s t tα+ + = + =  for 'a A∀ ∈ .  

Note that the single-stage Markovian assumption is not restrictive for our approach as we could 
extend our methods to the multi-stage case by expanding the state space [46]. Let network be in 

state ( )S t
 
at time t and we want to find the probability of the network state ( )δ+S t , where δ  

is a positive integer number. Given the independence assumption of arcs’ congestion states, this 
can be formulated as follows: 

( ) ( )( ) ( )
1

| ( ) | ( )δ δ
=

+ = +∏
A

a a

a

P S t S t P s t s t  (3)  

Then the congestion state transition probability matrix for each arc in δ  periods can be found by 
the Kolmogorov’s equation [47]: 

( ) ( ) ( ) ( ), 1 ...ij ij ij

a a a a
ij ij ij

T t t t t tδ α α α δ     + = × + × × +       (4)  

With the normal distribution assumption of velocities, the time to travel on an arc can be 
modeled as a non-stationary normal distribution. We further assume that the arc’s travel time 
depends on the congestion state of the arc at the time of departure (equivalent to the arrival time 
whenever there is no waiting). It can be determined according to the corresponding normal 
distribution: 

( ) ( ) ( )( )2, , ~ , , , , ,a a at a s N t a s t a sδ µ σ  (5)  
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where ( ), ,δ
a

t a s
 
is the travel time on arc a at time t with congestion state ( )a

s t ;  ( ), ,
a

t a sµ
 
and 

( ), ,
a

t a sσ  are the mean and standard deviation of the travel time on arc a  at time t  with 

congestion state ( )a
s t . For the clarity of notation, we hereafter suppress the arc label from the 

parameter space wherever it is obvious, i.e. ( ), ,
a

t a sδ
 
will be referred as ( ),

a
t sδ . 

 
We assume that objective of dynamic routing is to minimize the expected travel time based on 
the real-time information. The nodes (intersections) of the network represent decision points 
where a routing decision can be made. Since our algorithm is also applicable for a network with 
incidents, in the next section we present our incident modeling approach, and then integrate the 
recurrent congestion and incident models. 
 

7.2. Incident Modeling 

In this section, we develop incident models which measure the incident clearance time and the 
delay experienced as a result of incident. In section 4, we integrate recurrent congestion and 
incident models with the dynamic routing model. 
 

7.2.1 Estimating Incident Duration 

The incident duration is defined as the total of detection/reporting, response, and clearance times. 
Due to the nature of most incident response mechanisms, the longer the incident has not been 
cleared, the more likely that it will be cleared in the next period. For example, the probability of 
an incident being cleared in the 15th minute, given that it has lasted 14 minutes, is greater than 
the probability of it being cleared in the 14th minute given that it has lasted 13 minutes. This is 
because it is more likely that someone has already reported the incident and an incident response 
team is either on the way or has already responded. Let t be the time to clear the incident. Then, 
we have the increasing hazard rate property, e.g., λ(t+1)> λ(t), where λ(t)=f(t)/(1-F(t))

 
is the 

hazard rate of incident clearance in duration t, and f(t) and F(t) are the density and cumulative 
density functions of the clearance duration, respectively. We choose the Weibull distribution 
with increasing hazard rate to model the incident clearance duration.  
 

Whenever there is an incident on an arc in the network, we assume that its starting time ( 0

inct ), 

current status (i.e. cleared/not cleared), expected duration (µ), and standard deviation (σ) are 
available through ITS incident management and incident database systems. Hence, we can 
estimate the parameters of the Weibull distribution (φ(a,b)) of the incident clearance duration 
[47]. Furthermore, if an incident occurs en route, we may simply re-optimize the routing policy 
by assuming that the new origin node is the node that the driver is at or arrives next.  
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7.2.2 Estimating Incident-Induced Delay 

Our incident delay model is based on [29]. Here incident-induced delay function, ( )Θ ⋅ , is based 

on the incident duration φ, road nonincident capacity denoted with c (vehicle per hour, or vph in 
short), road capacity during the incident  denoted with ρ(vph) and arrival rate of vehicles to the 

incident arc denoted with q(vph). Given these parameters for an incident started at 0

inct , the 

vehicle arriving to the incident arc at time (t) experiences the following expected incident-
induced delay: 

( )( ) ( )12 1 3 2.
m

c
E D D P P d

c

ρ− 
Θ = − + 

 
 (6)  

where ( )
2

1
12 .

D

D
D x x dxϕ= ∫ , ( )0

1 inc

c
D t t

c q

ρ −
= − 

− 
, ( )0

2 inc

q
D t t

ρ

 
= − 
 

, ( )0

m inc

q
d t t

ρ

ρ

 −
= − 
 

,
 

( )
2

1
0

.
D

P x x dxϕ= ∫ , ( )
2

2 .
D

P x x dxϕ
∞

= ∫ , and
 

( )3 1 21P P P= − + .  

 
 
In order to track the amount of time that each arc has spent in the incident state, we define an 

incident duration vector defined over all the arcs, ( )I t , i.e. ( ) ( ) ( ) ( ){ }1 2 | |, ,..., AI t i t i t i t= . Note 

that if an arc a is not an incident arc, then ( )a
i t =0, otherwise ( ) ( )0

a inc
i t t t a= −

 
and ( )0

a
i t< < ∞ , 

where ( )0

inc
t a  is the incident onset time on arc a. For presentation clarity, we will hereafter omit 

the arc reference from the incident onset time, i.e. ( )0 0

inc inc
t t a= , whenever incident arc reference 

is obvious.  
 

The incident delay model is an additive model, in that, ( )Θ ⋅
 
represents the delay time by which 

the arc travel time under same conditions (congestion state and the time) will be increased by a 
duration amounting to the incident induced delay. Specifically, given the arc travel time without 

the incident, ( ), , 0
a

t s iδ = , and the incident parameters, ( , , , ,c q iϕ ρ ), we can express the arc 

travel time with incident as: 

( ) ( ) ( )0, , , , 0 , , , ,
a a a inc

t s i t s i c q i t tδ δ ϕ ρ= = + Θ = −  (7)  

 
We make the following assumptions for the incident delay function: 

Assumption 1: Incident delay is only experienced on the incident arc (no propagation  
of   the incident delay effect in the remainder of the network). 

Assumption 2: Incident delay function is additive which amplifies the incumbent  
arc travel time.  

Assumption 3: Incident delay function, ( )Θ ⋅ , is such that the total delay associated  

by deciding to wait at a node (e.g., waiting time plus the incident delay), is  
not less than the case without waiting. 
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In practice, the incident effect propagates in the network in the form of a shockwave after a 
certain duration following the incident. Since our goal is to investigate the impact of incidents on 
the travel time, we choose to focus on the most important ingredient, namely the incident-
induced delay on the incident arc. Hence, Assumption 1 is acceptable under certain scenarios. 
One scenario is where the incident duration is not long enough that vehicles divert to alternative 
arcs or the capacity of alternative arcs is sufficiently large to accommodate the diversion without 
any change in their congestion state. The additive model assumption (Assumption 2) is 
appropriate since the travel time delay of a particular incident depends on both the incident 
characteristics and the incumbent travel time on the arc.  Assumption 3 is consistent with our 
network and travel time assumptions where we assume that waiting at a node (or on an arc) is not 
permitted and/or does not provide travel time savings (first-in-first-out property). The following 
lemma provides a requirement for the incident model parameters such that the Assumption 3 

holds. 
 

Lemma 1. The incident-induced delay parameters (c,q), satisfying the following condition for 
the minimal waiting time of ∆  (smallest discrete time interval), ensures that waiting at the 
incident node does not reduce the expected travel time. 

( ) ( ), ,a k a k

q
t s t s

c
µ µ+ ∆ − ≥ − ∆

 
 

Proof. Let ∈a A denote the incident arc with origin and destination nodes ( )1, +k kn n . Further, let 

( )0

1 , ,
k k a k k inc

t t t s t tδ+ = + −  represent the arrival time to the node 
1+k

n  after departing from 
k

n at 

time 
k

t . Then the expected travel time from node 
k

n  to the trip destination node (
d

n ) under an 

optimal policy is ( )( ) ( )( ){ }0 * 0

1, , , , , ,
a k k inc k k a k k inc

E t s i t t F n t t s t t wδ δ+= − + + − , where the second 

term is the cost-to-go from node 
1+k

n  at time 
1k

t +
 with congestion state vector w  for future arcs 

at 
1+k

t .  Let’s denote the expected travel time from node 
k

n  to the trip destination node (
d

n ) at 

time 
k

t  and 
k

t + ∆  with ( )kD t  and ( )kD t + ∆ , respectively. 

( ) ( ) ( )( )0 * 0

1, , , , , ,
k a k k inc k k a k k inc

D t t s t t F n t t s t t wδ δ+= − + + −  

( ) ( ) ( )( )0 * 0

1, , , , , ,
k a k k inc k k a k k inc

D t t s t t F n t t s t t wδ δ++ ∆ = + ∆ + ∆ − + + + ∆ + ∆ −  

Assumption 3 states that at any node arrival time ( )kt , waiting at the node does not lead to lower 

destination arrival time than without waiting. We write this condition for the minimal waiting 
time of ∆  unit time (smallest discrete time interval), 

( ){ } ( ){ }E D t E D t+ ∆ − ≥ −∆
. 

We assume that cost-to-go functions alone satisfy this relationship as we assumed that link travel 
times (in both congestion states)  and state transitions are such that waiting at a node does not 
provide travel time savings in the recurrent congestion (e.g., first-in-first-out property). For ∆  
waiting time this leads to the following relation for every 

k
t : 

( )( ) ( )( )* 0 * 0

1 1, , , , , , , ,
k k a k k inc k k a k k inc

F n t t s t t w F n t t s t t wδ δ+ ++ ∆ + + ∆ + ∆ − − + − ≥ −∆ . 
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Hence, we have the following relation: 

( ){ } ( ){ }0 0, , , ,
a k k inc a k k inc

E t s t t E t s t tδ δ+ ∆ + ∆ − − − ≥ −∆ , 

where, 

( ){ } ( ) ( ){ }
( ) ( ){ }

0 0

0

, , , , 0 , , , ,

, , , , , ,

a k k inc a k a k inc

a k a k inc

E t s t t E t s i c q i t t

t s E c q i t t

δ δ ϕ ρ

µ ϕ ρ

− = = + Θ = −

= + Θ = −
 

and, 
( ),a kt sµ

 is the mean travel time on arc a at time 
k

t with congestion state s. The expression 

( ){ }0, , , ,
a k inc

E c q i t tϕ ρΘ = −  can be expressed in two alternative closed-form expressions.  In the 

first case, we assume that the vehicle experiences the maximum delay (i.e. fixed-delay regime in 
Fu  and Rilett [29]), 

( ){ } ( )0 0, , , ,
a k inc k inc

q
E c q i t t t t

ρ
ϕ ρ

ρ

−
Θ = − = − . 

The other alternative is the variable-delay regime   in which the vehicle experiences a delay 
somewhere between the no-delay and the maximum delay [29].  

( ){ } ( )0 0, , , ,a k inc inc k inc

c c q
E c q i t t t t

c c

ρ
ϕ ρ µ

− −
Θ = − = − − . 

Note that the waiting decision at the incident node is reasonable only in the case of incident 
queue dissipation, i.e. either the incident is cleared but the queue is not fully dissipated or the 
incident is not cleared but the vehicle will exit the link before the clearance. This corresponds to 
the variable-delay regime and we will show that this holds true by comparing the conditions 
derived for each case. We first express the no node waiting condition under incident for variable-
delay regime as: 

( ){ } ( ){ }
( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ) ( )

( ) ( )

0 0

0 0

0 0

, , , ,

, , , , , , , , , ,

, ,

, , .

a k k inc a k k inc

a k a k inc a k a k inc

a k a k k inc k inc

a k a k

E t s t t E t s t t

t s E c q t t t s E c q t t

c q c q
t s t s t t t t

c c

q
t s t s

c

δ δ

µ ϕ ρ µ ϕ ρ

µ µ

µ µ

+ ∆ + ∆ − − − ≥ −∆

+ ∆ + Θ + ∆ − − − Θ − ≥ −∆

− −
+ ∆ − − + ∆ − + − ≥ −∆

+ ∆ − ≥ − ∆

 

When we take the limit  0∆ → , we have, 

( ),
|

k

a

t t

d t s q

dt c

µ
= ≥ − . 
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In the maximum delay case, the no node waiting condition can be expressed as: 

( ){ } ( ){ }
( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ) ( )

( ) ( )

0 0

0 0

0 0

, , , ,

, , , , , , , , , ,

, ,

, , .

a k k inc a k k inc

a k a k inc a k a k inc

a k a k k inc k inc

a k a k

E t s t t E t s t t

t s E c q t t t s E c q t t

q q
t s t s t t t t

q
t s t s

δ δ

µ ϕ ρ µ ϕ ρ

ρ ρ
µ µ

ρ ρ

µ µ
ρ

+ ∆ + ∆ − − − ≥ −∆

+ ∆ + Θ + ∆ − − − Θ − ≥ −∆

− −
+ ∆ − + + ∆ − − − ≥ −∆

+ ∆ − ≥ − ∆

 

When we take the limit  0∆ → , we have, 

( ),
|

k

a

t t

d t s q

dt

µ

ρ
= ≥ − . 

Note that since the capacity under incident is less than regular capacity, i.e. c ρ> , we have the 

condition for variable-delay regime more strict than the fixed-delay regime, i.e.,  / /q c q ρ− > . 

Hence, for arbitrary waiting time ∆ , no node waiting condition under incident is: 

( ) ( ), , .a k a k

q
t s t s

c
µ µ+ ∆ − ≥ − ∆  

□ 
8. METHODOLOGY: DYNAMIC ROUTING MODEL WITH 

    RECURRENT AND NON-RECURRENT CONGESTION 

 
We assume that the objective of our dynamic routing model is to minimize the expected travel 

time based on real-time information where the trip originates at node 0n
 
and concludes at node 

d
n . Let's assume that there is a feasible path between ( )0,

d
n n  where a path ( )0 1,.., ,.., −=

k K
p n n n

 
is defined as sequence of nodes such that 1( , )+≡ ∈

k k k
a n n A, 0,.., 1= −k K  and K  is the number 

of nodes on the path. We define set 1( , )+≡ ∈
k k k

a n n A as the current arcs set of node k
n , and 

denoted with ( )kCrAS n . That is, ( ) { }1: ( , )+≡ ≡ ∈
k k k k k

CrAS n a a n n A  is the set of arcs 

emanating from node k
n . 

 
Each node on a path is a decision stage (or epoch) at which a routing decision (which node to 

select next) is to be made. Let ∈
k

n N
 
be the location of kth decision stage, k

t is the time at kth 

decision stage where { }1,...,∈kt T , 1−>
K

T t . Note that we are discrediting the planning horizon.  
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We next define our look ahead policy for projecting the congestion states in the network. While 
optimal dynamic routing policy requires real-time consideration and projection of the traffic 
states of the complete network, this approach makes the state space prohibitively large. In fact, 
there is little value in projecting the congestion states well ahead of the current location. This is 
because the projected information is not different than the long run average steady state 
probabilities of the arc congestion states. Hence, an efficient but practical approach would 
tradeoff the degree of look ahead (e.g., number of arcs to monitor) with the resulting projection 
accuracy and routing performance. This has been very well illustrated in Kim et al. [24]. Thus 
we limit our look ahead to finite number of arcs that can vary by the vehicle location on the 
network. The selection of the arcs to monitor would depend on factors such as arc lengths, value 
of real-time information, and the arcs’ congestion state transition characteristics. For ease of 
presentation and without loss of generality, we choose to monitor only two arcs ahead of the 
vehicle location and model the rest of the arcs’ congestion states through their steady state 
probabilities. Accordingly, we define the following two sets for all arcs in the network. 

( )kScAS a , the successor arc set of arc k
a ,

 
( ) { }1 1 1 2: ( , )+ + + +≡ ≡ ∈

k k k k k
ScAS a a a n n A  , i.e., the set 

of outgoing arcs from the destination node ( 1+k
n ) of arc k

a . ( )kPScAS a , the post-successor arc 

set of arc k
a , ( ) { }2 2 2 3: ( , )+ + + +≡ ≡ ∈

k k k k k
PScAS a a a n n A  i.e., the set of outgoing arcs from the 

destination node ( 2+k
n ) of arc 1+k

a .  

 
Since the total trip travel time is an additive function of the individual arc travel times on the 
path plus a penalty function measuring earliness/tardiness of arrival time to the final destination, 
the dynamic route selection problem can be modeled as a dynamic programming model. The 

state of the system at k th decision stage is denoted by ( )
1 2 ,, , ,

k kk k kka an t s I
+ +∪Ω . This state vector 

is composed of the state of the vehicle and network and thus characterized by the current node  

( k
n ), the current node arrival time ( k

t ), and 
1 2 ,+ +∪k k ka as  the congestion state of arcs 1 2+ +∪k ka a

 

where ( ){ }1 1:+ + ∈
kk ka a ScAS a

 
and ( ){ }2 2:+ + ∈

kk ka a PScAS a , and incident durations ( k
I ) of 

the network at stage k , i.e. ( )k k
I I t≡ . The action space for the state ( )

1 2 ,, , ,
k kk k kka an t s I

+ +∪Ω  is 

the set of current arcs of node k
n , denoted with ( )kCrAS n . 

 

At every decision stage, the trip planner evaluates the alternative arcs from ( )kCrAS n
 
based on 

the remaining expected travel time. The expected travel time at a given node with the selection 
of an outgoing arc is the expected arc travel time on the arc chosen and the expected travel time 

of the next node. Let { }0 1 1, ,...,π π π π −=
K  

be the policy of the trip and is composed of policies for 

each of the K-1 decision stages. For a given state ( ), , ,k n t S IΩ , the policy ( )π Ω
k k  is a 

deterministic Markov policy which chooses the outgoing arc from node k
n , i.e., 

( ) ( )π Ω = ∈
k k k

a CrAS n . Therefore the expected travel cost for a given policy vector 

{ }0 1 1, ,...,π π π π −=
K  is as follows:
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( ) ( ) ( )( )
2

0 1 1

0

, , , , ,
k

K

K K k k k k k

k

F n t S I E g g
δ

π δ
−

− −
=

 
= Ω + Ω Ω 

 
∑  (8)  

where ( )0 0 0 0, , ,n t S I  is the starting state of the system. δ
k  

is the random travel time at decision 

stage k, i.e., ( ) ( ) ( )( ) ( ), , , , , , ,
k k k k a k a k

t s t i t c q iδ δ π ϕ ρ≡ Ω +Θ
 
and ( ), , , , 0 0c q iϕ ρΘ = = , i.e. the 

incident delay of an arc without incident. ( , )
a k k

g δΩ
 

is cost of travel on arc 

( ) ( )k k k
a CrAS nπ= Ω ∈  at stage k , i.e., if travel cost is a function (φ ) of the travel time, then 

( ) ( )( , , )
k k k k k

g π δ φ δΩ Ω ≡ . Then the minimum expected travel time can be found by minimizing 

( )0 , , ,F n t S I  over the policy vector { }0 1 1, ,...,π π π π −=
K as follows: 

( )
{ }

( )
0 1 1

*

0 0
, ,...,

, , , min , , ,
K

F n t S I F n t S I
π π π π −=

=  
(9)  

The corresponding optimal policy is then 
{ }

( )
0 1 1

*

0
, ,...,

arg min , , ,
K

F n t S I
π π π π

π
−=

= . Hence, the Bellman’s 

cost-to-go equation for the dynamic programming model can be expressed as follows [46]: 

( ) ( ) ( ){ }* *

1min ( , , )
k k

k k k
F E g F

π δ
π δ +Ω = Ω Ω + Ω  

(10) 

For a given policy ( ) ( )π Ω = ∈
k k k k

a CrAS n , we can re-express the cost-to-go function by 

writing the expectation in the following explicit form: 

( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
11 2

1 1 2 1

, , , | | , , , , , ,

| | , , ,

k

a a kk k

k k k

k k k

k k k k k k k k k

s s I

a a a

F n t S I a P n t S I a g a

P s t s t P s t P I t I t F n t S I

δ

δ δ

δ δ δ
++ +

+ + + +

= Ω +

+ + + 

∑

∑ ∑ ∑
 (11) 

 

 

where ( )| , , , ,kP n t S I aδ  is the probability of travelling arc k
a  in k

δ
 
periods. ( )( )

2 1k kaP s t
+ +  is 

the long run probability of arc ( )2 2:+ + ∈
kk ka a PScAS a  being in state 

2 1,k kas
+ +  

in stage 1+k . This 

probability can be calculated from the historical frequency of a state for a given arc and time. 

 

 

We use backward dynamic programming algorithm to solve for ( )*

k
F Ω , 1, 2,.., 0k K K= − − . 

In the backward induction, we initialize the final decision epoch such that, ( )1 1 1,− − −Ω = ΩK K Kn t  , 

1−K
n  is destination node, and ( )1 0

K
F − Ω =

 
if 1− ≤

K
t T . Accordingly, a penalty cost is accrued 

whenever there is delivery tardiness, e.g., 1− >
K

t T . 
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9. DISCUSSION OF RESULTS: EXPERIMENTAL STUDY 

This section demonstrates the performance of the proposed algorithm on a network from 
southeast Michigan with real-time traffic data from the Michigan Intelligent Transportation 
Systems (MITS) Center. MITS center is the hub of ITS technology applications at the Michigan 
Department of Transportation (MDOT) and oversees a traffic monitoring system composed of 
180 freeway miles instrumented with 180 Closed Circuit TV Cameras, Dynamic Message Signs, 
and 2260 Inductive Loops. The methods also utilize real-time and archived data from 
Traffic.com, a private company that provides traffic information services in several states and 
also operates additional sensors and traffic monitoring devices in Michigan. Traffic.com also 
provides information regarding incidents causing non-recurrent congestion (e.g., incident 
location, type, severity, and times of incident occurrence and clearance). We implemented all our 
algorithms and methods in Matlab 7 and executed on a Pentium IV machine (with 1.6 GHz speed 
processor and 1024 MB RAM) running Microsoft Windows XP operating system. 
 
Our experimental study is outlined as follows: Section 5.1 introduces two road networks from 
southeast Michigan used for demonstrating the performance of the proposed algorithms along 
with a description of their general traffic conditions. Section 5.2 describes the process and the 
results from modeling of recurrent congestion for the networks. Section 5.3 reports savings from 
employing the proposed dynamic routing model under recurrent congestion for a network with 
multiple OD pairs. Section 5.4 presents the experimental setup that involves an incident and 
reports results and savings from employing the proposed dynamic routing model under both 
recurrent and non-recurrent congestion. 
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Figure 2. (a) South-East Michigan Road Network Considered for Experimental Study.  

(b) Sub-Network from Southeast Wayne County 
 

9.1. Sample Networks and Traffic Data  

This section introduces the road networks from southeast Michigan used for demonstrating the 
performance of the proposed algorithms along with a description of their general traffic conditions. As 
illustrated in Figure 2, the sample network covers southeast Michigan freeways and highways in and 
around the Detroit metropolitan area.  

 
The network has 30 nodes and a total of 98 arcs with 43 observed arcs (with real-time ITS 
information from MITS Center) and 55 unobserved arcs. Real-time traffic data for the observed 
arcs is collected from MDOT Center for 23 weekdays from January 21, 2008 to February 20, 
2008 for the full 24 hours of each day at a resolution of an observation every minute. The raw 
traffic speed data from the MITS Center is cleaned with a series of procedures from Texas 
Transportation Institute and Cambridge Systematics [4] to improve quality and reduce data 
errors. 
 
A small part of our full network, labeled sub-network, is used here to better illustrate the methods 
and results (Figure 2b). The sub-network has five nodes and six observed arcs, with more details 
provided in Table 1.  
  

 

(a) (b) 
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Table 1. Information Regarding Sub-Network Nodes and Arcs 

   FROM TO 

Arc ID Freeway 
Length 

(miles) 
Node # 

Description 

(Exit #) 
Node # 

Description 

(Exit #) 

1 I-94 1.32 5 216 26 215 

2 M-8 1.75 4 56A (I-75) 30 7C (M-10) 

3 I-75 3.13 4 56A 5 53B 

4 I-75 2.81 5 53B 6 50 

5 M-10 3.26 30 7C 26 4B 

6 M-10 1.42 26 4B 6 2A 

 

In the experiments based on the sub-network, node 4 is considered as the origin node and node 
six as the destination node of the trip. Given the OD pair, we present the speed data for the six 
different arcs of the sub-network in Figure 3. It can be seen clearly that the traffic speeds follow 
a stochastic non-stationary distribution that vary with the time of the day. The mean speeds and 
standard deviations for these same arcs are shown in Figure 4, clearly revealing the non-
stationary nature of traffic.  

 
Figure 3.  Raw Traffic Speeds for Arcs on Sub-Network (mph) at Different Times of the 

Day 
(Data: Weekday traffic from January 21 to February 20. Each color represents a distinct day of 23 days) 
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Figure 4.  Traffic Mean Speeds (mph) and Standard Deviations by Time of the Day for 

Arcs on Sub-Network. (15 minute time interval resolution) 
 

9.2 Recurrent Congestion Modeling 

The proposed dynamic routing algorithm calls for identification of different congestion states 
and estimation of their state transition rates as well as arc traverse times by time of day. Given 
the traffic speed data from the MITS Center, we employed the Gaussian Mixture Model (GMM) 
clustering technique to determine the number of recurrent-congestion states for each arc by time 
of day. In particular, we employed the greedy learning GMM clustering method of Verbeek [48] 
for its computational efficiency and performance. To estimate the number of congestion states, 
traffic speed data from every pair of two consecutive time periods, t and t+1, are clustered and 

modeled using a bi-variate joint Gaussian distribution ( , 1 , 1;i i

t t t t+ +µ Σ ), where i denotes the ith cluster. 

The Gaussian distribution assumption has been employed by others in the literature (see Kim et 
al. [23]). The clusters are ordered by their means and the densities of their projections onto the 
two axes are employed to identify the congestion state speed intervals, as illustrated in Figure 5.  

Formally, the cut-off speed between congestion state-pair ( , 1)i i +  for arc a  at time t is denoted 

by ( )i

ac t  and is calculated as follows: ( )1
( ) , : ( ) ( )

t t

i

a i i
c t x x f x f x

+
= =

 
where ( )f ⋅  is the projected 

probability density function for state i. Unlike most clustering methods, the GMM clustering 
procedure employed does not call for specification of number of clusters (i.e., congestion states) 
in advance and can determine the optimal number of clusters based on the maximum likelihood 
and model complexity measures.  
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However, we did limit the number of clusters to two, considered quite adequate for modeling 
recurrent-congestion, and to limit estimation errors attributable to data scarcity. As expected, the 
GMM procedure generally yielded mostly two states, even without the constraint, as in Figure 5 

(resulting in states denoted ‘congested’ and ‘uncongested’ states with 
1

1c (8:30)= 64.9 mph), and 

rarely a single state during periods of low traffic (as in Figure 6). Following these observations, 
we have adopted two congestion states in representing arc congestion dynamics. Note that this 
does not compromise from the accuracy of congestion modeling, rather provides uniformity in 
the algorithmic data structures across all arcs in the network. 

 

Figure 5.  (a) Joint Plots of Traffic Speeds in Consecutive Periods for Modeling State-

Transitions at 8:30 am, for Arc 1; (b) Cluster Joint Distributions of Speed at 8:30 am 

Generated by GMM; (c) Partitioned Traffic States Based on Projections 

 

Figure 6. (a) Joint Plots of Traffic Speeds in Consecutive Periods for Modeling State-

Transitions at 10:00 am, for Arc 1; (b) Single Cluster Joint Distribution of Speed at  

10:00 am Generated by GMM; (c) Partitioned Traffic States Based on Projections 

 

The parameters of the traffic state joint Gaussian distributions (i.e., , 1 , 1;i i

t t t t+ +µ Σ ) along with the 

computed cut-off speeds (if GMM yields more than one state) are employed to calculate travel 
time distribution parameters and the transition matrix elements as explained in section 3. In the 

event that two states are identified by GMM, �� denotes the probability of state transition from 
congested state to congested state where as �� denotes the probability of state transition from 
uncongested state to uncongested state.  
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Figure 7.  Recurrent Congestion State-Transition Probabilities for Arcs on Sub-

Network. α: Congested to Congested Transition; β: Uncongested to Uncongested 

Transition Probability (Plotted with 15-minute time interval resolution) 

 
 
Figure 7 plots these transition rates for the different arcs of the sub-network. Note that the state 
transitions to same states (i.e., congested to congested or uncongested to uncongested) are more 
likely during peak demand time periods, which increase the value of the congestion state 
information, and is the case in practice. For the sub-network, the mean and standard deviation of 
arc travel times are illustrated in Figure 8 and Figure 9, respectively, by traffic state and time of 
day. 
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Figure 8.  Sub-Network Arc Travel Time Means in Minutes  

(Plotted with 15-minute time interval resolution) 
 

9.3 Results from Modeling Recurrent Congestion 

This section highlights the potential savings from explicit modeling of recurrent congestion 
during dynamic vehicle routing. First, we discuss the results for routing on the sub-network. As 
stated earlier, we consider node 4 as the origin node and node 6 as the destination node of the 
trip. Three different path options exist (path 1: 4-5-6; path 2: 4-5-26-6; and path 3: 4-30-26-6). 
Note that our aim is not to identify an optimal path, rather, to identify the best policy based on 
the time of the day, location of the vehicle, and the traffic state of the network (for paths can be 
sub-optimal under non-stationary networks). However, in practice, almost all commercial 
logistics software aim to identify a robust (static) path that is best on the average. In this context, 
given the traffic flow histories for the arcs of the sub-network, path1: 4-5-6 would be most 
robust, for it dominates other paths most of the day under all network states. Hence, we identify 
path 1 as the baseline path and show the savings from using the proposed dynamic routing 
algorithm with regard to baseline path. Since we limit the traffic state look ahead to only 
successor and post-successor arcs, there are five arc states to be considered at the starting node of 
the trip. This implies that there are 25=32 starting network traffic state combinations. 
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Figure 9.  Sub-Network Arc Travel Time Standard Deviations in Minutes  

(Plotted with 15-minute time interval resolution) 

 
We simulated the trip 10,000 times for each of these starting network traffic state combinations 

throughout the day for 15-minute interval starting times (yielding (24×60)/15=96 trip start 
times). Figure 10a plots the mean baseline path travel times over 10,000 simulation runs for 
every combination of the sub-network traffic state (all 32 of them) and Figure 10b plots the mean 
travel times for the dynamic policy.  

 

Figure 10. Mean travel times for all state combinations of the sub-network (each color 

represents a different state combination): (a) Baseline path. (b) Dynamic vehicle routing 

policy 

Figure 11(a) plots the corresponding percentage savings from employing the dynamic vehicle 
routing policy over the baseline path for each network traffic state combination and Figure 11b 
shows the average savings (averaged across all network traffic states, treating them equally 
likely). It is clear that savings are higher and rather significant during peak traffic times and 
lower when there is not much congestion, as can be expected.  
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Figure 11. Savings from employing dynamic vehicle routing policy over baseline path: 

(a) Savings for each of the 32 network state combinations (b) Average savings across all 

state combinations 

 
Besides the sub-network (Figure 2b), as listed in Table 2, we have also identified 5 other origin 
and destination (OD) pairs in the southeast Michigan road network (Figure 2a) to investigate the 
potential savings from using real-time traffic information under a dynamic routing policy. Unlike 
the sub-network, these OD pairs have both observed and unobserved arcs and each OD pair has 
several alternative paths from origin node to destination node. 

 
Table 2 : Origin-Destination Pairs Selected from Southeast Michigan Road Network 

 ORIGIN DESTINATION 

OD Pair Node # 
Description 

(Intersection of) 
Node # 

Description 

(Intersection of) 

1 2 I-75 & US-24 21 I-275 & I-94 

2 12 I-96 & I-696 25 I-96 & I-94 

3 19 M-5 & US-24 27 I-696 & I-94 

4 23 I-94 & M-39 13 I-96 & I-275 

5 3 I-75 & I-696 15 I-96 & M-39 

 

Once again, we identify the baseline path for each OD pair (as explained for the case of routing 
on the sub-network) and show percentage savings in mean travel times (over 10,000 runs) over 
the baseline paths from using the dynamic routing policy. Figure 12 plots the percentage savings 
for each network traffic state combination and Figure 13 shows the average savings (averaged 
across all network traffic states, treating them equally likely). The savings are consistent with 
results from the sub-network, somewhat validating the sub-network results, with higher savings 
once again during peak traffic times. 
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Figure 12. Savings of Dynamic Policy Over Baseline Path During the Day for All 

Starting States of Given OD Pairs (with 15-minute time interval resolution) 

 

 

Figure 13.  Average Savings of Dynamic Policy Over Baseline Path During the Day for 

All starting states of given OD pairs (with 15-minute time interval resolution) 
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9.4. Impact of Modeling Incidents 

This section highlights the potential savings from explicit modeling of non-recurrent congestion 
along with modeling of recurrent congestion during dynamic vehicle routing. As for the setting, 
we focus on the sub-network (Figure 2b). We derive the dynamic routing policies in two ways. 
Initially, the dynamic policy does not account for non-recurrent congestion even though there is 
an incident in the network. Later, we allow the dynamic policy to explicitly account for non-
recurrent congestion information to generate the optimal policy. We show the results for 6 
starting times during the day (to study the impact of non-stationary traffic on savings): 6:30 am, 
9:00 am, 10:30 am, 4:00 pm, 5:30 pm and 7:00 pm. To achieve a good comparison, we set all 
parameters of the incident to be the same for all starting times. We create an incident on either 
arc 3, or 4, or 6 with duration mean of 10 minutes and standard deviation of 5 minutes, following 
a Weibull distribution (scale parameter of 11 and a shape parameter of 2). We assume that all the 
arcs of the sub-network have a capacity of 1800 vehicles per hour (vph) under normal conditions 
and that the incident reduces their capacity to 1080 vph. Also, we assume in-flow traffic arrival 
rate for each arc to be 1500 vph during these operation times. We have also validated the 
assumption of no node waiting for incident arcs using the condition derived in Lemma 1.  
 
The percentage savings from the explicit modeling of non-recurrent congesting along with 
recurrent congestion during dynamic vehicle routing are illustrated in Figure 14. The results are 
very compelling and pertain to three different scenarios. In the first scenario, the incident occurs 
10 minutes before vehicle’s departure from the starting node. In the second and third scenarios, 
the incident occurs 20 minutes and 30 minutes before vehicle’s departure from the starting node, 
respectively. For example, if the vehicle departs the origin node at 6:30 am, incident is simulated 
to occur at 6:20 am or 6:10 am or 6:00 am, and incident has not yet been cleared in all three 
cases. 

 

Figure 14.  Savings realized by dynamic routing based on modeling both recurrent and 

non-recurrent congestion compared to the dynamic routing with only recurrent congestion 

modeling: a: 6:00, b: 7:30, c: 9:00, d: 16:00, e: 17:30, and f: 19:00. Incident is either on arc 

3, or 4, or 6. Trip starts (a) 10 minutes (b) 20 minutes (c) 30 minutes after incident has 

occurred 
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The savings for the first scenario are presented in Figure 14a. Since arc 3 is close to the origin 
node, the effect of incident is generally high which leads to greater savings. Arc 4 is a 
downstream arc (i.e., it is not connected to the origin node), thus the incident is partially cleared 
by the time the vehicle reaches there. Subsequently, the impact of the incident on arc travel time 
and the savings are lesser. Arc 6 is also a downstream arc but the dynamic policy (without taking 
into account the non-recurrent congestion) sometimes chooses this arc, thus there are savings 
associated with explicit modeling of non-recurrent congestion. Due to space constraints, we are 
not presenting results from incidents on other arcs. The results for other arcs vary for similar 
reasons. The results for the second scenario (e.g., 20 minutes into the incident) are presented in 
Figure 14b. The savings for this scenario are less than the first scenario since the incident has 
partially or fully cleared by the time the vehicle reaches the incident arcs. Otherwise, we 
generally see consistency in savings with the first scenario. Figure 14c presents the results for the 
third scenario and savings for this scenario are mostly less than the other scenarios since the 
incident is more likely to be fully cleared by the time the vehicle reaches the incident arcs. To 
illustrate the results better, we also report the path distributions for the case where incident took 
place on arc 4 (because of space limits, we are not showing the other results). Figure 15a reports 
the path distribution of the dynamic policy in the absence of explicit modeling of non-recurrent 
congestion due to the incident that took place 10 minutes before trip start time. Figure 15b, c, and 
d report path distributions under explicit modeling of incidents and the resulting non-recurrent 
congestion, with trip start times of 10, 20, and 30 minutes into the incident, respectively. Since 
the incident is on path 1, there is no routing on path 1 for the case when trip starts just 10 minutes 
after the incident occurred (Figure 15b). As time passes, since the probability of incident 
clearance and no delay regime increases, dynamic routing policy starts to select this path as well 
(Figure 15d and d). 

 

Figure 15.  Path distribution from dynamic routing under an incident on arc 4 for 

different trip start times: a: 6:00, b: 7:30, c: 9:00, d: 16:00, e: 17:30, f: 19:00. (a) Results 

without modeling incident and trip starts 10 minutes into incident. (b), (c), and (d) report 

path distributions under explicit modeling of incidents, with trip start times of 10, 20, and 

30 minutes into the incident, respectively 
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10. CONCLUSIONS 

 
The paper proposes practical dynamic routing models that can effectively exploit real-time traffic 
information from Intelligent Transportation Systems (ITS) regarding recurrent congestion, and 
particularly, non-recurrent congestion stemming from incidents (e.g., accidents) in transportation 
networks. With the aid of this information and technologies, our models can help drivers avoid 
or mitigate trip delays by dynamically routing the vehicle from an origin to a destination in road 
networks. While non-recurrent congestion is known to be responsible for a major part of network 
congestion, extant literature mostly ignores this in proposing dynamic routing algorithms.  We 
model the problem as a non-stationary stochastic shortest path problem with both recurrent and 
non-recurrent congestion. We propose effective data driven methods for accurate modeling and 
estimation of recurrent congestion states and their state transitions. A Markov decision process 
(MDP) formulation that generates a routing “policy” to select the best node to go next based on a 
“state” (vehicle location, time of day, and network congestion state) is proposed to solve the 
problem. While optimality is only guaranteed if we employ the full state of the transportation 
network to derive the policy, we recommend a limited look ahead approach to prevent 
exponential growth of the state space. The proposed model also estimates incident-induced arc 
travel time delay using a stochastic queuing model and uses that information for dynamic re-
routing (rather than anticipate these low probability incidents).  
 
ITS data from southeast Michigan road network, collected in collaboration with Michigan 
Intelligent Transportation System Center and Traffic.com, is used to illustrate the performance of 
the proposed models. Our experiments clearly illustrate the superior performance of the SDP 
derived dynamic routing policies when they accurately account for recurrent congestion (i.e., 
they differentiate between congested and uncongested traffic states) and non-recurrent 
congestion attributed to incidents. Experiments show that as the uncertainty (standard deviation) 
in the travel time information increases, the dynamic routing policy that takes real-time traffic 
information into account becomes increasingly superior to static path planning methods. The 
savings however depend on the network states as well as the time of day. The savings are higher 
during peak times and lower when traffic tends to be static (especially at night). Experiments 
also show that explicit treatment of non-recurrent congestion stemming from incidents can yield 
significant savings. 
 

11. RECOMMENDATIONS FOR FURTHER RESEARCH 
 
Further research will focus on developing dynamic routing algorithms for supporting ‘milk-runs’ 
where a vehicle departs from an origin to serve several destinations in a network with one or 
more of the following settings: 1) stochastic time-dependent network where vehicles may 
encounter recurrent and/or non-recurrent congestion during the trip, 2) vehicle must 
pickup/deliver within specific time-windows at customer locations, 3) stochastic dependencies 
and interactions between arcs' congestion states, and 4) anticipate and respond to the behavior of 
the rest of the traffic to the real-time ITS information.  
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12. RECOMMENDATIONS FOR IMPLEMENTATION 
 
The research identified a number of recommendations for implementation to help leverage the 
full potential of dynamic routing of freight vehicles using real-time ITS information.  
 

• Implementation mechanisms for ensuring data quality. Recommendations include collecting 
and sharing up-to-date sensor maintenance and placement information in the implementation 
network. This allows the users of the models and algorithms developed to revise their 
estimates of the travel times as well as traffic behavior under incident conditions. While the 
majority of the arteries do not have sensors, we found that some of the sensors in major 
highways are inactive. The absence of these sensors on the large segments of highways 
creates quality problems associated with distribution estimations for travel times as well as 
state transitions. In addition, the data collected from the some of the sensors are found to be 
inaccurate, e.g. inconsistent speed data, which may be attributable to weather, sensor’s health 
state, and communication network inefficiencies. Recommendations for the missing sensor 
information or inaccurate data captures include benchmarking the traffic condition on the 
network segments devoid of sensors with those having sensors and reconciling and using a 
linear regression estimation of the speed data at any given time between adjacent sensors on 
a highway segment.  
 

• The routing policies derived in this research are for point-to-point routing of the freight 
carrying vehicle. In most JIT systems this routing is performed in the form of milk run 
pickups and deliveries. Implementation recommendation for milk runs is to enumerate the 
potential order of customer visits and then using the historical congestion state probabilities 
for links emanating from each customer node visited. 

 

• The off-line routing policy generation is impractical given the large number of links and 
incident state possibilities. Recommendation for implementation is to communicate the route 
actions (which road network link to select next) to the driver through a wireless connection 
(e.g., satellite) in real time. The identification of the real-time routing decisions is achieved 
through a centralized dynamic routing decision support system implementing the models and 
algorithms developed in this research. The decision support system is recommended to 
extract the real-time traffic congestion information from the ITS server. When the server is 
down or there are communication problems, the default operating mode for the decision 
support system is to assume the long-term congestion state probabilities. Figure 16 illustrates 
the recommended framework for data communication and decision support integration. 

 



Figure 16. Recommended Framework for Data C
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Recommended Framework for Data Communication and Decision Support 

Integration 

 

ation and Decision Support 



32 
 

13. BIBLIOGRAPHY 

[1] Chang T-S, Wan Y-W, OOI WT. A stochastic dynamic traveling salesman problem with 
hard time windows. European Journal of Operational Research 2009;198(3):748-59. 

[2] Taniguchi E, Thompson RG, Yamada T, Duin JHR. City logistics: Network modelling 
and Intelligent Transportation Systems. Pergamon: Elsevier Science; 2001. 

[3] Schrank D, Lomax T. The 2007 annual urban mobility report. Urban Mobility 
Information: Texas Transportation Institute; 2007. 

[4] Texas Transportation Institute, Cambridge Systematics Inc. Monitoring Urban Freeways 
in 2003: Current conditions and trends from archived operations data. Washington, DC: 
US FHWA Office of Operations; 2004. 

[5] Cambridge Systematics Inc., Texas Transportation Institute. Traffic congestion and 
reliability: Linking solutions to problems. Washington, D.C: US FHWA Office of 
Operations; 2004. 

[6] Sigal CE, Pritsker AAB, Solberg JJ. The stochastic shortest route problem. Operations 
Research 1980;28:1122-9. 

[7] Frank H. Shortest paths in probabilistic graphs. Journal of Operational Research 
1969;17:583-99. 

[8] Loui RP. Optimal paths in graphs with stochastic or multidimensional weights. 
Communications of the ACM 1983;26(9):670-6. 

[9] Eiger AP, Mirchandani P, Soroush H. Path preferences and optimal paths in probabilistic 
networks. Transportation Science 1985;19:75–84. 

[10] Dijkstra E. A note on two problems in connection with graphs. Numerical Mathematics 
1959;1:269-71. 

[11] Hall R. The fastest path through a network with random time-dependent travel time. 
Transportation Science 1986;20(3):182-8. 

[12] Bertsekas DP, Tsitsiklis J. An analysis of stochastic shortest path problems. Mathematics 
of Operations Research 1991;16:580-95. 

[13] Fu L, Rilett LR. Expected shortest paths in dynamic and stochastic traffic networks. 
Transportation Research Part B 1998;32B(7):499-516. 

[14] Bander JL, White III CC. A heuristic search approach for a nonstationary shortest path 
problem with terminal costs. Transportation Science 2002;36:218-30. 

[15] Fu L. An adaptive routing algorithm for in vehicle route guidance systems with real-time 
information. Transportation Research Part B 2001;35B(8):749-65. 

[16] Waller ST, Ziliaskopoulos AK. On the online shortest path problem with limited arc cost 
dependencies. Networks 2002;40 (4):216-27. 

[17] Gao S, Chabini I. Optimal routing policy problems in stochastic time-dependent 
networks. Transportation Research Part B 2006;40B:93-122. 

[18] Miller-Hooks ED, Mahmassani HS. Least possible time paths in stochastic, time-varying 
networks. Computers & Operations Research 1998;12:1107-25. 

[19] Miller-Hooks ED, Mahmassani HS. Least expected time paths in stochastic, time-varying 
transportation networks. Transportation Science 2000;34 198-215. 

[20] Psaraftis HN, Tsitsiklis JN. Dynamic shortest paths in acyclic networks with Markovian 
arc costs. Operations Research 1993;41:91-101. 

[21] Polychronopoulos GH, Tsitsiklis JN. Stochastic shortest path problems with recourse. 
Networks 1996;27(2):133-43. 



33 
 

[22] Azaron A, Kianfar F. Dynamic shortest path in stochastic dynamic networks: Ship 
routing problem. European Journal of Operational Research 2003;144:138-56. 

[23] Kim S, Lewis ME, White III CC. Optimal vehicle routing with real-time traffic 
information. IEEE Transactions on Intelligent Transportation Systems 2005;6(2):178-88. 

[24] Kim S, Lewis ME, White III CC. State space reduction for non-stationary stochastic 
shortest path problems with real-time traffic congestion information. IEEE Transactions 
on Intelligent Transportation Systems 2005;6(3):273-84. 

[25] Wirasinghe SC. Determination of traffic delays from shock-wave analysis. 
Transportation Research 1978;12:343-8. 

[26] Al-Deek H, Garib A, Radwan AE. New method for estimating freeway incident 
congestion. Transportation Research Record 1995;1494:30-9. 

[27] Mongeot H, Lesort JB. Analytical expressions of incident-induced flow dynamics 
perturbations. Transportation Research Record 2000;1710:58-68. 

[28] Morales J. Analytical procedures for estimating freeway traffic congestion. Public Roads 
1986;50(2):55-61. 

[29] Fu L, Rilett LR. Real-time estimation of incident delay in dynamic and stochastic 
networks. Transportation Research Record 1997;1603:99-105. 

[30] Cohen H, Southworth F. On the measurement and valuation of travel time variability due 
to incidents on freeways. Journal of Transportation And Statistics 1999;2(2):123-31. 

[31] HCM. Highway Capacity Manual. Washington, D.C.: Transportation Research Board; 
2000. 

[32] Li J, Lan C-J, Gu X. Estimation of incident delay and its uncertainty on freeway 
networks. Transportation Research Record 2006;1959:37-45. 

[33] Baykal-Gürsoy M, Xiao W, Ozbay K. Modeling traffic flow interrupted by incidents. 
European Journal of Operational Research 2008, In Press. 

[34] Lindley JA. Urban freeway congestion: quantification of the problem and effectiveness of 
potential solutions. Institute of Transportation Engineers Journal 1987;57(1):27-32. 

[35] Garib A, Radwan AE, Al-Deek H. Estimating magnitude and duration of incident delays. 
ASCE Journal of Transportation Engineering 1997;123(6):459-66. 

[36] Sullivan EC. New model for predicting incidents and incident delay. ASCE Journal of 
Transportation Engineering 1997;123(5):267-75. 

[37] Gaver DP. Highway delays resulting from flow stopping conditions. Journal of Applied 
Probability 1969;6:137-53. 

[38] Golob TF, Recker WW, Leonard JD. An analysis of the severity and incident duration of 
truck-involved freeway accidents. Accident Analysis & Prevention 1987;19(4):375-95. 

[39] Giuliano G. Incident characteristics, frequency, and duration on a high volume urban 
freeway. Transportation Research Part A 1989;23A(5):387-96. 

[40] Khattak AJ, Schofer JL, Wang M-H. A simple time sequential procedure for predicting 
freeway incident duration. IVHS Journal 1995;2(2):113-38. 

[41] Noland RB, Polak JW. Travel time variability: A review of theoretical and empirical 
issues. Transport Reviews 2002;22(1):39-54. 

[42] Hensher D, Mannering F. Hazard-based duration models and their application to 
transport analysis. Transport Reviews 1994;14:63-82. 

[43] Nam D, Mannering F. An exploratory hazard-based analysis of highway incident 
duration. Transportation Research Part A 2000;34A(2):85-102. 



34 
 

[44] Ferris MC, Ruszczynski A. Robust path choice in networks with failures. Networks 
2000;35:181-94. 

[45] Thomas BW, White III CC. The dynamic shortest path problem with anticipation. 
European Journal of Operational Research 2007;176:836-54. 

[46] Bertsekas DP. Dynamic programming and optimal control. Athena Scientific; 2001. 
[47] Ross SM. Introduction to Probability Models. Academic Press, Inc.; 2006. 
[48] Verbeek JJ, Vlassis N, Kröse B. Efficient greedy learning of Gaussian Mixture Models. 

Neural Computation 2003;5(2):469-85. 
 
 

 

 

 

 

 

14. LIST OF ACRONYMS 

 
ADP  Adaptive Decision Policy 
ATIS  Advanced Traveler Information Systems 
DP  Dynamic Programming 
GMM  Gaussian mixture model 
GPS  Global Positioning System 
ITS  Intelligent Transportation Systems 
JIT  Just-in-Time 
LET  Least Expected Travel 
MDOT  Michigan Department of Transportation 
MDP  Markov decision process 
MITS  Michigan Intelligent Transportation System Center 
MITS  Michigan Intelligent Transportations Systems 
OD  Origin and Destination 
OEM  Original equipment manufacturers 
SDP  Stochastic Dynamic Programming  
SP  Shortest Path 
STD-SP Stochastic Time-Dependent Shortest Path 
vph  Vehicle per hour 
 


