
�

�
�
�
�
�
�
�
�

MICHIGAN OHIO 
Alternate energy and system mobility to stimulate economic development.

�

Report No: MIOH UTC TS18p3

Advanced Road Scene Image 
Segmentation and Pavement Evaluation 

Using Neural Networks

 
Dr. Ezzatollah Salari  

Dr. Eddie Yein- Juin Chou
Dept. of Electrical Engineering & 

Computer Science  
College of Engineering 

The University of Toledo 
Toledo, OH 43606 

�

��

 
 

HIO UNIVERSITY TRANSPORTATION CENTER
Alternate energy and system mobility to stimulate economic development.

 

Report No: MIOH UTC TS18p3 2010-Final�

 
Advanced Road Scene Image 

Segmentation and Pavement Evaluation 
Using Neural Networks  

 
FINAL REPORT 

 
 
 
�
�
 
 
 
 

PROJECT TEAM 

 
Juin Chou  

of Electrical Engineering &  
 

College of Engineering  
The University of Toledo  

Dr. James Lynch
Dr. Utpal Dutta

Dept. of Civil , Architectural
Environmental Engineering

College of Engineering & Science
University of Detroit Mercy

Detroit, MI 48221
�

ENTER 
Alternate energy and system mobility to stimulate economic development. 

Advanced Road Scene Image 
Segmentation and Pavement Evaluation 

Dr. James Lynch  
Dr. Utpal Dutta  

, Architectural  & 
Environmental Engineering  

College of Engineering & Science  
Detroit Mercy  

Detroit, MI 48221  



���
�

Report No: MIOH UTC TS18p3 2010-Final 
TS18 Project 3 – the third of a three project series 

FINAL REPORT 
 
Developed By:   

Dr. Ezzatollah Salari 
Principal Investigator 

�Esalari@utnet.utoledo.edu   
 

Dr. Eddie Yein Juin Chou, P.E. 
Co-Principal Investigator 
���������	�
����	��
	�� 


Dr. James Lynch 

Co-Principal Investigator 
lynchjj@udmercy.edu  

 
Dr. Utpal Dutta 

Co-Principal Investigator 
duttau@udmercy.edu  

 
 
 

SPONSORS 
 
This is a Michigan Ohio University Transportation Center project supported by 
the U.S. Department of Transportation, The University of Toledo, and the 
University of Detroit Mercy. 
 
 

DISCLAMER 
 
The contents of this report reflect the views of the authors, who are responsible 
for the facts and the accuracy of the information presented herein. This 
document is disseminated under the sponsorship of the Department of 
Transportation University Transportation Centers Program, in the interest of 
information exchange. The U.S. Government assumes no liability for the contents 
or use thereof.  
 
The opinions, findings and conclusions expressed in this publication are those of 
the authors and not necessarily those of the Michigan State Transportation 
Commission, the Michigan Department of Transportation, or the Federal Highway 
Administration. 
�



����
�

Advanced Road Scene Image 
Segmentation and Pavement Evaluation 

Using Neural Networks 

TS18 Project 3 – the third of a three project series�

ABSTRACT 

The current project, funded by MIOH-UTC for the period 9/1/2009-8/31/2010, continues our 
efforts in designing an image processing based pavement inspection system for the 
assessment of highway surface conditions.  One of the most important tasks in pavement 
maintenance is pavement surface condition evaluation distress measurement.  In order to 
eliminate the tedious and unreliable manual inspection of pavement surface evaluation, image 
processing and pattern recognition techniques are used to increase the efficiency and 
accuracy and decrease the costs of pavement distress measurements.  Existing systems for 
automated pavement defect detection commonly require special devices such as lights, lasers, 
etc, which dramatically increase the cost and limit the system to certain applications.  
Therefore, in this report, a low cost automatic pavement distress evaluation approach is 
presented.  This method can provide real-time pavement distress detection as well as 
evaluation results based on color images captured from a camera installed on a survey 
vehicle.  The entire process consists of two main parts: pavement surface extraction followed 
by pavement distress detection and classification. In the first part, a novel color segmentation 
method based on a feed forward neural network is applied to separate the road surface from 
the background. In the second part, a segmentation technique based on probabilistic 
relaxation is utilized to separate distress areas from the road surface.  The geometrical 
parameters obtained from the detected distresses are then fed to a neural network based 
pavement distress classifier in which the defects are classified into different types.  
Simulation results are given to show that the scheme presented in this report is both effective 
and reliable on a variety of pavement images. 
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1. PAVEMENT INSPECTION USING IMAGING TECHNOLOGIES  
During the past few years, several technologies have been developed using a variety of 
concepts and approaches for automated pavement distress detection. Among these 
technologies, pavement image-collection technology is seemingly the most popular 
approach, which generally uses survey vehicles that are capable of collecting and storing 
pavement surface images.  Most systems record pavement surface images using a video 
camera or photographic camera mounted on a survey vehicle shown in Figure 1. 

 

Figure 1. A Van with Pavement Inspection Device  

In the late 1980s, the Japanese consortium Komatsu built an automated-pavement distress 
survey system [1], comprised of a survey vehicle and data processing system on board to 
simultaneously measure cracking, rutting, and longitudinal profiles. A maximum 
resolution of 2048 x 2048 was obtained at the speed of 10 km/h.  The Komatsu system 
worked only at night to control lighting conditions.  The system represented the 
implementation of the most sophisticated hardware technology at that time.  However, it 
did not output the types of cracking and only functioned during the night.  
 
Earth Technology Corporation [2] created a research unit called Pavement Condition 
Evaluation Services (PCES). The automated system created by PCES was the first to use 
line-scan cameras at a 512-pixel resolution to collect pavement data.  However, this effort 
was discontinued as the necessary technologies associated with the image capturing and 
processing was not advanced enough at the time.  Further PCES designs, produced their 
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own hardware and made their own system level software, which was not only costly, but 
also limited the research team from obtaining higher performance equipment from third 
parties at a later time. 
 
In the early 1990s, Haas and Hendrickson [3] proposed a standard model to represent 
pavement surfaces that moved toward a unified and automated acquisition of key 
characteristics for improving data quality.  Laser ranging was executed within a subset of 
the source image which designated an area of interest.  The laser ranging would then 
complement or reject the vision data, so that dark areas which were not caused by 
pavement distress such as tire marks, oil spills, and shadows, could be ruled out.  Walker 
and Harris [4] also reported the development of a crack identification system using these 
laser ranging technologies.  Velinsky and Kirschke [5] designed a machine vision system 
requiring laser ranging to overcome the shortcomings of an optical system. 
 
Guralnick et al. [6] proposed a method using shadow moiré interferometer to measure 
coarse pavement distress, such as abnormal elevations and large sized potholes.  The 
method allows detection of areas of the pavement that deviate from specified flatness 
criteria.  The shadow moiré interferograms provide surface elevation variation 
measurements that cannot be obtained through ordinary videotaping.  They can detect 
severe road elevation deformations caused by heavy loads, and potholes with undefined 
borders, which optical methods cannot detect. 
 
Systems based on the Swedish PAVUE technology were used in the U.S. briefly in the 
mid 1990s.  The Swedish PAVUE data acquisition equipment includes four video 
cameras, a proprietary lighting system, and four S-VHS videocassette recorders [7].  The 
image collection subsystem is integrated into a Laser RST van. The off-line workstation 
is based on a set of custom designed processing boards in a cabinet to analyze continuous 
pavement data from the recorded video images. Surface images are stored on S-VHS 
tapes in analog format. 
 
In the late 1990s, RoadWare Corporation was actively involved in using a new product, 
WiseCrax [8], for an automated survey of pavement surface.  The data collection uses 
two analog cameras synchronized with a strobe illumination system, with each camera 
covering about half the width of a pavement lane. The image processing is done in an off-
line office environment relying on the host CPUs to conduct image processing at a speed 
of two or three miles per hour with substantial operator assistance. 
 
In the past few years, researchers at the University of Arkansas made substantial progress 
in automatically identifying and classifying pavement surface cracks at highway speed 
using a data collection system with one high-resolution digital camera and parallel 
processing of the data [9]. The current system can collect two-dimensional pavement 
surface images, identify and classify four types of cracks at a speed of over 60 MPH. The 
four types of cracks are longitudinal, transversal, alligator and block. The size of the 
cracks that can be identified and classified is about 2-millimeters.  However, those 
existing automated distress detection systems commonly require special devices such as 
lights, laser, etc, which dramatically increases costs and limits the system to certain 
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applications only.  Thus, methods that are more economical, efficient, and practical for 
automatic pavement inspections are required.  
 
This research aims to provide a reliable low cost automated pavement distress evaluation 
system capable of detecting cracks from complicated backgrounds while evaluating the 
severity of the damage.  The proposed model consists of two major parts: pavement 
surface extraction and pavement distress detection as well as damage evaluation. In the 
first part, a multistep color segmentation method is presented to separate the road surface 
from the background areas, such as houses, bushes, grass and trees.  Following the road 
segmentation, a pavement distress detection algorithm based on probabilistic relaxation is 
described in the second part to further enhance the contrast between the cracks and the 
background.  Based on the geometrical and topological parameters obtained from the 
crack structure, a neural network based pavement distress classifier is designed to assign 
the cracks into different types and severity groups.  The overall procedure of the 
proposed system is illustrated in Figure 2. 

 

Figure 2. Overall Diagram of the Proposed Iterative Algorithm 

Original image 

Image pre-processing 

Region growing 

Pavement region merging 

Pavement surface 

Background subtraction 

Crack detection based on 
Probabilistic relaxation  

Crack classifier and damage 
severity evaluation 

Distress analysis results 
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2. PAVEMENT SURFACE EXTRACTION  

In this section, we present an automatic pavement surface extraction method that aims to 
separate the pavement surface from its complicated background.  The input to the system 
is a series of forward view images continuously captured by a camera installed in front of 
the testing vehicle as it travels.  A color segmentation approach was developed that 
consists of three successive steps.  First, the input image is smoothed using a 3 x 3 
median filter to remove the noise while preserving the edge sharpness.  Then an initial 
region segmentation procedure based on region growing [10, 11] is applied to partition 
the image into small homogeneous regions.  Finally, a novel region merging method 
based on a neural network is developed to differentiate the road surface from its 
background regions. 

 

Figure 3. The Input Image to the System 

 

2.1. Region Growing  

The RGB color space is commonly used in color image segmentation in which color is 
represented by triplet red, green and blue intensity values.  Color distance is used as a 
measurement of color similarity where pixels/regions satisfying a certain degree of color 
homogeneity are grouped to form a cluster. 
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Let ���� ��  be the color of the pixel located at image coordinates���� �� , in which����� ��  is 
defined in terms of color components�� 	 � 
 	 � � 	 � .  The color distance between pixel 
� � �� � � �and��� � ��� ���  is defined as, 

� � � �� � � � � � � �� � �� � � � � �� 	 � � 	 �� � � �
 	 � 
 	 �� � � �� 	 � � 	 �� �        (1) 

Assume�� � � �� �  is the first pixel from the upper left corner to be examined for generating a 
new region.  The region growing scheme operates from the pixel�� � � �� �  in all directions 
to select the neighborhood pixels which are close enough to the pixel under study in 
terms of its color. If the neighborhood pixels satisfy the criterion, 

                  � � � �� � � � � � � �� � �� � � � ����                                                (2) 

where � ����  is a threshold value for initial region growing, they are clusterized as a 
region and the � 	 �
 	 �� 	 �values from equation (1) are replaced by the average RGB values 
of this region.  This process is reiterated until no pixel meets the growing criterion.  Then 
a new original pixel is chosen to start a new region growing process until every pixel in 
the image is assigned to a region. 

 

Figure 4. The Initial Segmentation by Region Growing 
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2.2. Pavement Region Merging 

After initial segmentation, we have a number of undesired small regions in addition to the 
pavement region, as shown in Figure 4.  To extract the pavement surface, we need to 
define a set of rules to guide the region merging process. In this section, a 3-layer feed 
forward artificial neural network is used to distinguish the pavement surface regions from 
the background regions.  Figure 5 illustrates the basic framework of the neural network 
model.  Each input node receives a feature descriptor that represents one aspect of the 
region.  The output layer consists of 2 nodes that denote the pavement surface region and 
background region, respectively.   

 

Figure 5. Neural Network Architecture for Region Merging 

2.3. Feature Selection 

Appropriate selection of the input features from each region is very important to the 
success of the merging process.  It is obvious that a region can be described in many 
respects, such as the color, texture, shape and size, etc.  A detailed explanation of various 
features and their distinct characteristics are provided in the following. 

 
2.3.1. Color Feature 
In the context of a pavement extraction application, color is considered to be more robust 
than other feature descriptors to represent the pavement surface. This is because the 
initially segmented small regions of the pavement surface often vary significantly in 
texture and shape due to the shadows and distresses, while their colors preserve a high 
degree of similarity.  To represent the statistical characteristics of color distribution, color 
histograms in 3 different channels of the RGB color space are obtained as shown in 
Figure 6.   It is evident that pixels that belong to the pavement surface take a dominant 
proportion of the whole image and mostly share a similar color.  Therefore, an inference 
can be drawn that the pavement portion of the image corresponds to the most significant 
peak value in the color histograms. 

Input layer  Hidden layer  Output layer 

Color similarity 

Spatial distance 

Pavement 

Background 

Size of the region 

Texture similarity 
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To measure the similarity between a given region and the pavement surface, we only 
need to calculate the color distance from the average RGB value of the region to the peak 
value of each histogram using the following equation, 

� ����� � ���  !"#$#%& � � ' �� �((( �  #!) � � � � �� *(((( �  #!) * � � � �� +(((( �  #!) +� �    (3)  

The measure of color similarity will serve as a main feature to the input of the neural 
network. 

 

Figure 6. Histograms of the Color Image 

2.3.2. Texture Feature  
The grayscale pavement image is used to derive the spatial texture features, which can 
then be combined with other features to produce the final segmentation.  Like many of 
the existing algorithms for texture analysis and synthesis, our approach is based on multi-
scale frequency decomposition [12].  
 
The key idea of the proposed method is that we are not interested in recognizing every 
minute detail in the image.  Rather, large areas with complex texture distribution such as 
grass and houses can be classified as “complex regions”, while areas with relatively 
uniform texture distribution such as the sky and pavement surface can be classified as 
“smooth regions”.  In this way, only four major texture classes (“smooth,” “horizontal,” 
“vertical,” and “complex”) are defined.  
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In our texture analysis, we use the bi-orthogonal wavelet decomposition [13] which is a 
separable filter and considered to be computationally efficient.  Since discarding the HH 
band does not result in significant loss of visual quality, only the HL and LH bands are 
used (note, H and L stand for the high-pass and low-pass bands in each of the horizontal 
and vertical orientations). 
 
The most commonly used feature for texture analysis in a wavelet domain is the energy 
of the subband coefficients.  Since the coefficients are quite sparse, it is necessary to 
perform some type of filtering operation to obtain a more uniform characterization of the 
texture.  Here, we use a median energy filter.  The advantage of the median filter is that it 
tends to remove the textures associated with transitions between regions.  In such cases, 
the increase in wavelet coefficients due to the region boundary is concentrated along the 
edge and is not intensified by the median operator. The size of the window must be large 
enough to capture the local texture characteristics, but not too large to avoid border 
effects.  We found that for the given image resolution and viewing distance, a 9 x 9 
window size gives the best results. 
 
Several clustering approaches are tested to obtain the texture segmentation.  The simplest 
and most effective was to apply two-level K-means to each of the horizontal and vertical 
components separately.  One of the cluster centers was always fixed at 0 (smooth texture) 
and the other was determined by the K-means algorithm.  The added advantage of this 
approach is that we obtain four texture classes with obvious interpretations: smooth 
texture, vertical texture, horizontal texture, and complex texture.  Figure 7 shows the 
results, with smooth texture represented by white, vertical by light gray, horizontal by 
dark gray, and complex by black. 

 
Figure 7. Image After Texture Segmentation 
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2.3.3. Other Features 
Other than the color and texture, size and location information of the regions are selected 
to be the other two descriptors as input into the neural network.  Based on our experience, 
size and location can provide valuable information for the following reasons: 

�  Most of the small regions are more likely to be merged with the larger ones. 
�  Regions near the image boundary are more likely to be components of the 

background while regions located at the lower or middle part of the image have a 
higher probability of being parts of the pavement.  

To keep track of the size of each region, we simply count the number of pixels in the 
region, and the number is recorded as an input to the neural network. As far as the 
location information is concerned, the centroid point of each region (highlighted by ‘*’ in 
Figure 8) is calculated to represent the location of the region by averaging the index of all 
pixels within the region.  The last feature descriptor to the neural network is obtained by 
calculating the spatial distance between the centroid of each region and a pre-defined 
pavement surface marker (highlighted by ‘o’ in Figure 8).  The distance between a region 
R and the pavement marker is the following Euclidian distance, 

 � ,-./0.� � ���  !"#$#%& � � � �1 2(((( � 1 3.�45� � � � ��6 2(((( � 6 3.�45� � �           (4) 

 

Figure 8. Spatial Distance of Each Region from the Road Marker 
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These features will then be available to the neural network shown in Figure 5.  After 
training the network with a set of artificial data, the final segmentation result is shown in 
Figure 9. 

 

Figure 9. Pavement Surface Extracted by the Proposed Method 
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3. CRACK DETECTION AND EVALUATION  

3.1. Non-Uniform Background Removals 

Crack detection on pavement surface using image processing techniques is considered to 
be a difficult problem due to the presence of noise in the image of the pavement surfaces.  
To prevent the influence of the shadings and to provide a more uniform background, a 
background subtraction method is applied ensuring the same background lighting 
condition for all parts of the pavement images.  To extract the background of the image, a 
relatively large size median filter is applied to the image to eliminate the detailed 
information on the pavement surface.  In this way, the cracks with a thin structure are 
removed from the image, leaving the raw pavement background only.  Then the extracted 
background is subtracted from the original image to obtain a subtracted image, of which 
the non-uniform illumination effect is fully removed.  
 
Figure 10 illustrates the process of removing light variations using a median filter. At 
first, we use a 15 x 15 window size median filter to smooth the original image while 
blurring the image [14].  Then the original image is subtracted from the smoothed image 
in order to remove the non-uniform background illumination. 

 
(a) 

   
(b) 
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(c) 

Figure 10. Non-Uniform Illumination Removal by Median Filtering, 

(a) Original Image, 

(b) Smoothed Image with the Median Filter, 

(c) Background Subtracted Image. 

3.2. Crack Detection  

In this section, a probabilistic relaxation [14] technique is used to label the crack pixel 
from the noisy pavement images. For each pixel in the image, the initial probability 
 0� � � �  corresponding to a crack is assigned according to the intensity value of the output 
of pre-processing by, 

��������������������������������������������������� 0� � � � �
789� � :;< � = �

789� � ; � = �
����������������������������������������������������� �>�  

where � ;  means the intensity value of pixel i, � :;<  is the minimum value in the image, and 
� ��� denotes the label for a crack pixel.  
 
The probability of a pixel to be a crack is then updated by considering the label 
probabilities of its neighborhood.  However, in crack detection, if the estimation of an 
isotropic neighborhood is used as a non-ambiguity, line structures like cracks in the 
image may be removed unexpectedly due to its structural property.  Therefore, we divide 
the neighborhood into eight sub-regions according to the direction and then estimate the 
non-ambiguity in each sub-region, in order to remain line structures as cracks.  This 
means that eight estimations of each pixel are calculated along different angles and 
structures passing through the pixel.  The maximum value of eight estimations is used to 
update the probability.   
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We can update probability�?; @� AB�  by, 

���������������?;
C� AB� � DE% F

 0� � � � $!G�H I � � � ��
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J K L 0� � � � M0N03.*5

� =O��������������������������������������������������������� �P� 

���������������������������HI � � � � �
=
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Q  0� � � �
0NRS

������������������������������������������������������������������� �T� 

where � I  is one of the eight sub-regions illustrated in Figure 11.  This probability 
updating process is repeated until it reaches a convergence.  In the next step, an Otsu’s 
thresholding method based on the obtained probability instead of the original intensity 
value is applied for the purposes of the segmentation.  Since the pixels located within the 
crack structures are of a higher probability to be crack than the isolated noise pixels, this 
thresholding technique is able to remove undesirable disconnected pieces of noise 
components while filling in missing parts of cracks. 

                       

Figure 11. Eight Sub-Regions Considered for Updating the Crack Probability 
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Figure 12. Crack Detection Results 

3.3. Crack Classification and Damage Severity Evaluation 

To reduce the computational complexity of the distress classification process, the binary 
image is partitioned into “tiles” [15].  Whether a tile is a crack tile or not is determined 
based on the percentage of crack pixels in a tile.  If the percentage of crack pixels in a tile 
is greater than the predefined threshold, the tile is considered to be a crack tile.  From the 
image of crack tiles, two kinds of histograms are computed: a vertical histogram and a 
horizontal histogram to represent the distribution of crack tiles in each column and row, 
respectively, as shown in the following equations, 

������UV�W� Q XYZX[\]�^_`

a

bcd

V�� � W� � � =�e f J���������������������������������g�  

������hV�W� Q XYZX[\]�^_`

i

;cd

V�� � W� � � =�e f j���������������������������������k�  

where V and H represent the vertical and horizontal histograms, M and N denote the 
number of rows and columns, respectively.  
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Figure 13. A Tile Image with Vertical and Horizontal Histograms   

Histograms show a clear pattern of a crack.  If the crack is developed in a longitudinal 
direction, there would be a peak in the vertical histogram.  On the other hand, if the crack 
is developed in the transversal direction, there would be a peak in the horizontal 
histogram.  If the crack is of a block type, the peaks could be found in both vertical and 
horizontal directions.  To represent the above observations, two accumulations of the 
differences between adjacent histogram values are calculated using Equations (10) and 
(11), 

���������������lm � Q U

i

;cd

V� � = W� U V�W� � � =�e f J�������������������������������������=n�  

��������������lo � Q U

a

bcd

V� � = W� U V�W� � � =�e f j������������������������������������==�  

The values of these two accumulators will serve as inputs to a specially designed artificial 
neural network to begin the process of crack classification.  The network is a 3 layer feed 
forward neural network.  The connection weights of the neural network are obtained from 
the training process by using artificial tile images.  Note, Num represents the number of 
crack tiles of an image. 
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Figure 14. Architecture of the Neural Network for Distress Classification   
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4. EXPERIMENTAL RESULTS  
This section evaluates the performance of the proposed method by considering more than 
100 actual pavement images. The images are of size 600 x 400 pixels captured from a 
camera generally installed in front of a testing vehicle on highway road surfaces.  Figures 
15 and 16 illustrate pavement surface segmentation along with the crack detection results 
of the proposed system. 
 
Tables 1 and 2 show the detailed training parameters for the region merging and distress 
classification neural networks, respectively. Thirty actual pavement images are utilized to 
train the network under manual supervision.  With a learning coefficient equal to 0.01, 
the neural networks could achieve a high training accuracy of 95% and higher. 
 
 
 

Table 1. Training Process for the Region Merging Neural Network 

Learning coefficient Nodes for each layer Epochs Accuracy 

0.01 3-6-2 500 97% 

 

Table 2. Training Process for the Distress Classification Neural Network 

Learning coefficient Nodes for each layer Epochs Accuracy 

0.01 3-30-4 1500 95% 
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Figure 15. Pavement Distress Detection Result No.1    
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Figure 16. Pavement Distress Detection Result No.2   
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There are two main criteria used to assess the performance of the system: one is 
processing time and the other is classification accuracy. As shown in Table 3, the 
algorithm is able to correctly classify all cases with typical parameters like transversal 
cracks and longitudinal cracks.  For pavement with a combination of different types of 
cracks, the cracks are all grouped into the combination category.  In this category, no 
specific crack type can be determined by the input parameters, but the damage severity 
level can be still determined by counting the number of crack tiles in the image. 
 
 

Table 3. Performance of the Proposed System 

Crack 
type 

Average processing 
time 

Accuracy Severity level Num. of test 
images  

No crack 

Transversal  

Longitudinal  

Block crack 

(Combination of 
different types) 

1.9 s 

2.2 s 

2.1 s 

 

 

2.5 s 

100% 

100% 

100% 

 

 

95% 

Low               16 

Low               15 

Low               22 

 

High               23 

Median             19 

Low                5  
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5. CONCLUSION 
 

This project further extends the scope of our earlier investigation in providing a more 
generalized solution in a less restricted environment.  In the this study, we consider a 
road scene containing grass, trees, buildings and other objects in addition to the pavement 
itself.  The presence of various objects and features in an acquired image poses a 
considerable challenge in detecting the desired structural failure patterns such as cracks 
and other surface anomalies.  In other words, the presence of various features brings in 
complications for a recognition system to classify the desired patterns. Hence, this 
necessitates the application of a more sophisticated segmentation process involving 
texture features to extract and identify the pavement region from the rest of the aerial 
image prior to the extraction of the cracks from the pavement region. 
 
In the segmentation process, we use both the color and texture information to extract the 
pavement regions.  A probabilistic labeling scheme is utilized to extract the crack features 
from the pavement images. In addition, neural networks are designed to process the 
pavement images and are also used as a decision tool to provide a classification of 
various types of cracks.  The proposed approach, in addition to producing competitive 
accuracy, has the positive attributes of design simplicity and computational efficiency.  
Our experimental results show that the method gives good crack detection results on 
different types of pavement images.  
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