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Advanced Road Scene Image
Segmentation and Pavement Evaluation
Using Neural Networks

TS18 Project 3 — the third of a three project series

ABSTRACT

The current project, funded by MIOH-UTC for the iper9/1/2009-8/31/2010, continues our
efforts in designing an image processing based rpame inspection system for the
assessment of highway surface conditions. Onéefntost important tasks in pavement
maintenance is pavement surface condition evalualistress measurement. In order to
eliminate the tedious and unreliable manual inspecif pavement surface evaluation, image
processing and pattern recognition techniques a@ex uo increase the efficiency and
accuracy and decrease the costs of pavement distreasurements. EXisting systems for
automated pavement defect detection commonly recpiecial devices such as lights, lasers,
etc, which dramatically increase the cost and lithié system to certain applications.
Therefore, in this report, a low cost automatic ggaent distress evaluation approach is
presented. This method can provide real-time pawmendistress detection as well as
evaluation results based on color images capturech fa camera installed on a survey
vehicle. The entire process consists of two maitisp pavement surface extraction followed
by pavement distress detection and classificatiothe first part, a novel color segmentation
method based on a feed forward neural network fdiebto separate the road surface from
the background. In the second part, a segmentagehnique based on probabilistic
relaxation is utilized to separate distress aream fthe road surface. The geometrical
parameters obtained from the detected distresseshan fed to a neural network based
pavement distress classifier in which the defeats elassified into different types.
Simulation results are given to show that the seéhprmesented in this report is both effective
and reliable on a variety of pavement images.
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1. PAVEMENT INSPECTION USING IMAGING TECHNOLOGIES

During the past few years, several technologie® limen developed using a variety of
concepts and approaches for automated pavememesdistietection. Among these
technologies, pavement image-collection technoligyseemingly the most popular
approach, which generally uses survey vehiclesareatapable of collecting and storing
pavement surface images. Most systems record pavesarface images using a video
camera or photographic camera mounted on a suefggle shown in Figure 1.

Figure 1. A Van with Pavement Inspection Device

In the late 1980s, the Japanese consortium Konmaititan automated-pavement distress
survey system [1], comprised of a survey vehiclg @ata processing system on board to
simultaneously measure cracking, rutting, and lwomfgnal profiles. A maximum
resolution of 2048 x 2048 was obtained at the spdelD km/h. The Komatsu system
worked only at night to control lighting conditians The system represented the
implementation of the most sophisticated hardwactrology at that time. However, it
did not output the types of cracking and only fumoed during the night.

Earth Technology Corporation [2] created a reseanci called Pavement Condition

Evaluation Services (PCES). The automated systeatent by PCES was the first to use
line-scan cameras at a 512-pixel resolution teecblbavement data. However, this effort
was discontinued as the necessary technologiesiatsb with the image capturing and
processing was not advanced enough at the timehdfUPCES designs, produced their



own hardware and made their own system level softwahich was not only costly, but
also limited the research team from obtaining higtexformance equipment from third
parties at a later time.

In the early 1990s, Haas and Hendrickson [3] pregas standard model to represent
pavement surfaces that moved toward a unified amdnaated acquisition of key
characteristics for improving data quality. Lasmnging was executed within a subset of
the source image which designated an area of siteréhe laser ranging would then
complement or reject the vision data, so that damas which were not caused by
pavement distress such as tire marks, oil spifid,sbhadows, could be ruled out. Walker
and Harris [4] also reported the development ofeglcidentification system using these
laser ranging technologies. Velinsky and Kirscfi{edesigned a machine vision system
requiring laser ranging to overcome the shortcosimigan optical system.

Guralnick et al. [6] proposed a method using shadwviré interferometer to measure
coarse pavement distress, such as abnormal elesatiod large sized potholes. The
method allows detection of areas of the pavemedit dieviate from specified flatness
criteria.  The shadow moiré interferograms providerface elevation variation

measurements that cannot be obtained through oydindeotaping. They can detect
severe road elevation deformations caused by hieads, and potholes with undefined
borders, which optical methods cannot detect.

Systems based on the Swedish PAVUE technology wsed in the U.S. briefly in the
mid 1990s. The Swedish PAVUE data acquisition gapeint includes four video
cameras, a proprietary lighting system, and foMHs videocassette recorders [7]. The
image collection subsystem is integrated into eeL&ST van. The off-line workstation
is based on a set of custom designed processingdivaa cabinet to analyze continuous
pavement data from the recorded video images. Qurfaages are stored on S-VHS
tapes in analog format.

In the late 1990s, RoadWare Corporation was agtivelolved in using a new product,
WiseCrax [8], for an automated survey of pavememtase. The data collection uses
two analog cameras synchronized with a strobe itation system, with each camera
covering about half the width of a pavement lartee image processing is done in an off-
line office environment relying on the host CPUstmduct image processing at a speed
of two or three miles per hour with substantial raper assistance.

In the past few years, researchers at the Uniyes$iirkansas made substantial progress
in automatically identifying and classifying pavameurface cracks at highway speed
using a data collection system with one high-resmbu digital camera and parallel
processing of the data [9]. The current system aalect two-dimensional pavement
surface images, identify and classify four typesraicks at a speed of over 60 MPH. The
four types of cracks are longitudinal, transversdligator and block. The size of the
cracks that can be identified and classified isuak®millimeters. However, those
existing automated distress detection systems cartymequire special devices such as
lights, laser, etc, which dramatically increasest€cand limits the system to certain



applications only. Thus, methods that are moreneeucal, efficient, and practical for
automatic pavement inspections are required.

This research aims to provide a reliable low cosbmated pavement distress evaluation
system capable of detecting cracks from complicatsekgrounds while evaluating the
severity of the damage. The proposed model censistwo major parts: pavement
surface extraction and pavement distress deteesowell as damage evaluation. In the
first part, a multistep color segmentation methogresented to separate the road surface
from the background areas, such as houses, buglass, and trees. Following the road
segmentation, a pavement distress detection aigotiased on probabilistic relaxation is
described in the second part to further enhancedhérast between the cracks and the
background. Based on the geometrical and topabgiarameters obtained from the
crack structure, a neural network based pavemstreds classifier is designed to assign
the cracks into different types and severity groupfhe overall procedure of the
proposed system is illustrated in Figure 2.

Original image
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Figure 2. Overall Diagram of the Proposed IterativeAlgorithm



2. PAVEMENT SURFACE EXTRACTION

In this section, we present an automatic pavemarfdee extraction method that aims to
separate the pavement surface from its complidaaetiground. The input to the system
is a series of forward view images continuouslytesgtl by a camera installed in front of
the testing vehicle as it travels. A color segragoh approach was developed that
consists of three successive steps. First, thatimpage is smoothed using a 3 x 3
median filter to remove the noise while presening edge sharpness. Then an initial
region segmentation procedure based on region ggoyiio, 11] is applied to partition
the image into small homogeneous regions. Finalyovel region merging method
based on a neural network is developed to diffeatntthe road surface from its
background regions.

50 100 150 200 250 300 3EI 400 450 500 550

Figure 3. The Input Image to the System

2.1. Region Growing

The RGB color space is commonly used in color imsggmentation in which color is
represented by triplet red, green and blue intgnatues. Color distance is used as a
measurement of color similarity where pixels/regi@atisfying a certain degree of color
homogeneity are grouped to form a cluster.



Let be the color of the pixel located at image coatés , in which is

defined in terms of color components . The color distance between pixel
and is defined as,
1)
Assume is the first pixel from the upper left corner te &xamined for generating a
new region. The region growing scheme operates tfee pixel in all directions

to select the neighborhood pixels which are claseugh to the pixel under study in
terms of its color. If the neighborhood pixels s@tithe criterion,

(2)

where Is a threshold value for initial region growingey are clusterized as a
region and the values from equation (1) are replaced by the aweR@B values
of this region. This process is reiterated untilpixel meets the growing criterion. Then
a new original pixel is chosen to start a new re@mwing process until every pixel in
the image is assigned to a region.
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Figure 4. The Initial Segmentation by Region Growig



2.2. Pavement Region Merging

After initial segmentation, we have a number ofesited small regions in addition to the
pavement region, as shown in Figure 4. To exttecpavement surface, we need to
define a set of rules to guide the region mergirag@ss. In this section, a 3-layer feed
forward artificial neural network is used to digfinsh the pavement surface regions from
the background regions. Figure 5 illustrates th@dframework of the neural network
model. Each input node receives a feature desctipat represents one aspect of the
region. The output layer consists of 2 nodesdleabte the pavement surface region and
background region, respectively.

Input layer Hidden layer Output layer

Color similarity

o Pavement
Texture similarity

Spatial distance Background

Size of the region

Figure 5. Neural Network Architecture for Region Meging

2.3. Feature Selection

Appropriate selection of the input features fronthea@egion is very important to the

success of the merging process. It is obvious @hetgion can be described in many
respects, such as the color, texture, shape aedetz A detailed explanation of various
features and their distinct characteristics areigix in the following.

2.3.1. Color Feature

In the context of a pavement extraction applicatmor is considered to be more robust
than other feature descriptors to represent theerpamt surface. This is because the
initially segmented small regions of the pavemanmtaze often vary significantly in
texture and shape due to the shadows and distregkis their colors preserve a high
degree of similarity. To represent the statistad@racteristics of color distribution, color
histograms in 3 different channels of the RGB cdpace are obtained as shown in
Figure 6. It is evident that pixels that beloogthe pavement surface take a dominant
proportion of the whole image and mostly sharenalar color. Therefore, an inference
can be drawn that the pavement portion of the intageesponds to the most significant
peak value in the color histograms.



To measure the similarity between a given regiod tre pavement surface, we only
need to calculate the color distance from the ayeeRGB value of the region to the peak
value of each histogram using the following equagtio
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The measure of color similarity will serve as a m#ature to the input of the neural
network.
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Figure 6. Histograms of the Color Image

2.3.2. Texture Feature

The grayscale pavement image is used to derivesghgal texture features, which can
then be combined with other features to producefitia# segmentation. Like many of
the existing algorithms for texture analysis andtsgsis, our approach is based on multi-
scale frequency decomposition [12].

The key idea of the proposed method is that wenatanterested in recognizing every
minute detail in the image. Rather, large aredbk womplex texture distribution such as
grass and houses can be classified as “complexnggiwhile areas with relatively
uniform texture distribution such as the sky angegpaent surface can be classified as
“smooth regions”. In this way, only four major taese classes (“smooth,” “horizontal,”
“vertical,” and “complex”) are defined.



In our texture analysis, we use the bi-orthogonavelet decomposition [13] which is a
separable filter and considered to be computatiprdiicient. Since discarding the HH
band does not result in significant loss of visgadlity, only the HL and LH bands are
used (note, H and L stand for the high-pass andplass bands in each of the horizontal
and vertical orientations).

The most commonly used feature for texture analyses wavelet domain is the energy

of the subband coefficients. Since the coeffigeate quite sparse, it is necessary to
perform some type of filtering operation to obtaimore uniform characterization of the

texture. Here, we use a median energy filter. ddheantage of the median filter is that it

tends to remove the textures associated with ttansibetween regions. In such cases,
the increase in wavelet coefficients due to theore@poundary is concentrated along the
edge and is not intensified by the median operdioe. size of the window must be large

enough to capture the local texture characteristicé not too large to avoid border

effects. We found that for the given image resoflutand viewing distance, a 9 x 9

window size gives the best results.

Several clustering approaches are tested to ofttaitexture segmentation. The simplest
and most effective was to apply two-level K-meamgach of the horizontal and vertical
components separately. One of the cluster cem@ssalways fixed at O (smooth texture)
and the other was determined by the K-means algorit The added advantage of this
approach is that we obtain four texture classe$ whvious interpretations: smooth
texture, vertical texture, horizontal texture, as@mplex texture. Figure 7 shows the
results, with smooth texture represented by whigtical by light gray, horizontal by
dark gray, and complex by black.

-

Figure 7. Image After Texture Segmentation




2.3.3. Other Features

Other than the color and texture, size and locatitormation of the regions are selected
to be the other two descriptors as input into teral network. Based on our experience,
size and location can provide valuable informafmnthe following reasons:

Most of the small regions are more likely to be geerwith the larger ones.

Regions near the image boundary are more likelybéo components of the
background while regions located at the lower oddi@ part of the image have a
higher probability of being parts of the pavement.

To keep track of the size of each region, we singplynt the number of pixels in the
region, and the number is recorded as an inputeméural network. As far as the
location information is concerned, the centroidnpaif each region (highlighted by * in
Figure 8) is calculated to represent the locatiotihe region by averaging the index of all
pixels within the region. The last feature dedono the neural network is obtained by
calculating the spatial distance between the cehtoeach region and a pre-defined
pavement surface marker (highlighted by ‘o’ in Fg@8). The distance between a region
R and the pavement marker is the following Euchdigstance,

-10. I"#$H%& o 1 345 84 6 345 4)
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Figure 8. Spatial Distance of Each Region from thRoad Marker



These features will then be available to the nenetvork shown in Figure 5. After
training the network with a set of artificial dathe final segmentation result is shown in
Figure 9.

Figure 9. Pavement Surface Extracted by the PropodeMethod



3. CRACK DETECTION AND EVALUATION

3.1.  Non-Uniform Background Removals

Crack detection on pavement surface using imageepsing techniques is considered to
be a difficult problem due to the presence of naisthe image of the pavement surfaces.
To prevent the influence of the shadings and towigeoa more uniform background, a

background subtraction method is applied ensurimg $ame background lighting

condition for all parts of the pavement images. extract the background of the image, a
relatively large size median filter is applied toetimage to eliminate the detailed

information on the pavement surface. In this wiag, cracks with a thin structure are

removed from the image, leaving the raw pavemecidgraund only. Then the extracted

background is subtracted from the original imageltain a subtracted image, of which
the non-uniform illumination effect is fully remoge

Figure 10 illustrates the process of removing ligatiations using a median filter. At
first, we use a 15 x 15 window size median filtersmooth the original image while
blurring the image [14]. Then the original imagesubtracted from the smoothed image
in order to remove the non-uniform background ilination.

(b)



(€)

Figure 10. Non-Uniform Illumination Removal by Median Filtering,
(a) Original Image,
(b) Smoothed Image with the Median Filter,
(c) Background Subtracted Image.

3.2. Crack Detection

In this section, a probabilistic relaxation [14thaique is used to label the crack pixel
from the noisy pavement images. For each pixelhm image, the initial probability
0 corresponding to a crack is assigned accordinbeantensity value of the output
of pre-processing by,

789 .. =
789 . =

where . means the intensity value of pixel... is the minimum value in the image, and
denotes the label for a crack pixel.

The probability of a pixel to be a crack is thendaged by considering the label
probabilities of its neighborhood. However, inaktadetection, if the estimation of an
isotropic neighborhood is used as a non-ambiguiy structures like cracks in the
image may be removed unexpectedly due to its straicbroperty. Therefore, we divide
the neighborhood into eight sub-regions accordmthé direction and then estimate the
non-ambiguity in each sub-region, in order to remime structures as cracks. This
means that eight estimations of each pixel areutstled along different angles and
structures passing through the pixel. The maximafue of eight estimations is used to
update the probability.



We can update probabiliy @ by,

!
$As DE%F— $IGH,
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where | is one of the eight sub-regions illustrated inufeg11.
updating process is repeated until it reaches &ergence.

components while filling in missing parts of cracks

This probability
In the next step, an Otsu’s
thresholding method based on the obtained prolbalistead of the original intensity
value is applied for the purposes of the segmamtatSince the pixels located within the
crack structures are of a higher probability tockeck than the isolated noise pixels, this
thresholding technique is able to remove undegrabkconnected pieces of noise
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Figure 11. Eight Sub-Regions Considered for Updatim the Crack Probability
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Figure 12. Crack Detection Results

3.3.  Crack Classification and Damage Severity Evation

To reduce the computational complexity of the éwsdrclassification process, the binary
image is partitioned into “tiles” [15]. Whethertiée is a crack tile or not is determined

based on the percentage of crack pixels in a lilthe percentage of crack pixels in a tile
is greater than the predefined threshold, thaditmnsidered to be a crack tile. From the
image of crack tiles, two kinds of histograms apenputed: a vertical histogram and a
horizontal histogram to represent the distribuwdrerack tiles in each column and row,

respectively, as shown in the following equations,

a

WWQXYZX[\|* © V W =efJ g
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i
hVW QXYZX[\]|* ~ V W =efj k
;cd

whereV and H represent the vertical and horizontal histogramisand N denote the
number of rows and columns, respectively.
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Figure 13. A Tile Image with Vertical and Horizontd Histograms

Histograms show a clear pattern of a crack. Ifdrexk is developed in a longitudinal
direction, there would be a peak in the verticatdgram. On the other hand, if the crack
is developed in the transversal direction, thereuld/dbe a peak in the horizontal
histogram. If the crack is of a block type, theake could be found in both vertical and
horizontal directions. To represent the above magi®ns, two accumulations of the
differences between adjacent histogram values arlated using Equations (10) and
(11),

|

lm, QU V = WU VW =efl] =n
cd

a
|0 QU V = WU VW :efj ==
bcd

The values of these two accumulators will servimpsts to a specially designed artificial

neural network to begin the process of crack diassion. The network is a 3 layer feed

forward neural network. The connection weightshef neural network are obtained from

the training process by using artificial tile imageNote, Num represents the number of
crack tiles of an image.
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Figure 14. Architecture of the Neural Network for Distress Classification
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4. EXPERIMENTAL RESULTS

This section evaluates the performance of the m®egonethod by considering more than
100 actual pavement images. The images are of6§i@ex 400 pixels captured from a
camera generally installed in front of a testingieke on highway road surfaces. Figures
15 and 16 illustrate pavement surface segmentatmry with the crack detection results
of the proposed system.

Tables 1 and 2 show the detailed training paramdterthe region merging and distress
classification neural networks, respectively. Thattual pavement images are utilized to
train the network under manual supervision. Witleaning coefficient equal to 0.01,
the neural networks could achieve a high trainicgueacy of 95% and higher.

Table 1. Training Process for the Region Merging Neral Network

Learning coefficient Nodes for each layer Epochs Accuracy

0.01 3-6-2 500 97%

Table 2. Training Process for the Distress Classdation Neural Network

Learning coefficient  Nodes for each layer Epochs Accuracy

0.01 3-30-4 1500 95%
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Figure 15. Pavement Distress Detection Result No.1
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Figure 16. Pavement Distress Detection Result No.2



There are two main criteria used to assess theormpeahce of the system: one is
processing time and the other is classificationueaxy. As shown in Table 3, the
algorithm is able to correctly classify all caseshwtypical parameters like transversal
cracks and longitudinal cracks. For pavement wittombination of different types of
cracks, the cracks are all grouped into the contionacategory. In this category, no
specific crack type can be determined by the imgawameters, but the damage severity
level can be still determined by counting the nundfecrack tiles in the image.

Table 3. Performance of the Proposed System

Crack Average processing Accuracy Severity level Num. of test
type time images
No crack 19s 100% Low 16
Transversal 22s 100% Low 15
Longitudinal 2.1s 100% Low 22
Block crack
(Combination of High 23
different types) )

25s 95% Median 19

Low 5




5. CONCLUSION

This project further extends the scope of our eaihivestigation in providing a more

generalized solution in a less restricted envirammeln the this study, we consider a
road scene containing grass, trees, buildings #ref objects in addition to the pavement
itself. The presence of various objects and featun an acquired image poses a
considerable challenge in detecting the desirattwtral failure patterns such as cracks
and other surface anomalies. In other words, thegmce of various features brings in
complications for a recognition system to clasdifye desired patterns. Hence, this
necessitates the application of a more sophisticaegmentation process involving

texture features to extract and identify the pavemegion from the rest of the aerial

image prior to the extraction of the cracks from ffavement region.

In the segmentation process, we use both the eolditexture information to extract the
pavement regions. A probabilistic labeling schesnatilized to extract the crack features
from the pavement images. In addition, neural ndt&/@are designed to process the
pavement images and are also used as a decisibriotgwovide a classification of
various types of cracks. The proposed approaclhddition to producing competitive
accuracy, has the positive attributes of desigrpbaity and computational efficiency.
Our experimental results show that the method go@sd crack detection results on
different types of pavement images.



6. REFERENCES

[1] T. Fukuhara, K. Terada, M. Nagao, A. Kasahara andclihashi. “Automatic
Pavement Distress Survey Systerdburnal of Transportation Engineering/ol.
116, No. 3, pp. 280-286, May/June 1990.

[2] http://www.aecom.com/

[3] C. Haas and C. Hendrickson. “Computer Based ModePavement Surfaces”.
Transportation Research Record 126@. 91-98, 1990.

[4] R. S. Walker and R. L. Harris. “Noncontact Pavemérack Detection System”.
Transportation Research Record 13fp. 149-157, 1991.

[5] S. A. Velinsky and K. R. Kirschke. “Design Considions for Automated Pavement
Crack Sealing Machinery'Proceedings of the Second International Conferesite
Applications of Advanced Technologies in Transpota Engineering pp. 77-80,
18-21 August 1991.

[6] S. A. Guralnick, E. S. Suen and C. Smith. “Automgtinspection of Highway
Pavement SurfaceJournal of Transportation Engineeringol. 119, pp. 1-12, 1993.

[7] K. C. P. Wang. "Design and Implementation of AuttedaSystems for Pavement
Surface Distress SurveyASCE Journal of Infrastructure Systerivs).6, No |, pp.
24-32, March, 2000.

[8] RoadWare, Online WiseCrax Product. Introductiotp:Hivww.roadware.com/

[9] K. C. P. Wang and W. Gong. “Automated Real-TimedPagnt Crack Detection and
Classification”. Final Report for Highway IDEA Pemjt 111, TRB-NCHRP-111May,
2007.

[10]A. Tremeau and N. Borel. “A Region Growing and MeggAlgorithm to Color
Segmentation”Patten Recognitiarvol.30, No.7, pp 1191-1203, 1997.

[11] R. Nock and F. Nielsen. “Statistical Region Megdin|[EEE Transactions on
Pattern Analysis and Machine Intelligen&®)]. 26, No. 11, November 2004.

[12] J. Chen, T. Pappas, A. Mojsilovic and B. Rogowifdaptive Image Segmentation
based on Color and TextureProceedings on International Conference on Image
Processing (ICIP)Vol. 3, pp.777-780, 2002.

[13] A. Cohen, |. Daubechies and J. C. Feauveau, “Biggonal Bases of Compactly
Supported WaveletsCommunication Pure Appl. Mathvol. 45, pp. 485-560, 1992.

[14]Y. Fujita and Y. Hamamoto. “A Robust Method for Aatatically Detecting Cracks
on Noisy Concrete Surfaces.Lecture Notes in Computer Scienc2009,
Vol.5579/2009, pp 76-85, 2009.

[15] B. J. Lee. "Position-invariant Neural Network fddigital Pavement Crack
Analysis”. Computer-aided Civil and Infrastructure Engineeringpl.19, pp 105-
118, 2004.



